#### Approach to Data Access, Hydroclimate Modeling & Scenario Development

Aniket Gupta, University of Arizona Abdul Moiz, Arizona State University

## Why the Hydroclimate Team?

- 1. Collect all available hydrometeorological observations in Arizona
- 2. Apply a suite of hydrologic models to reconstruct key water balance variables across the state, with a focus on:
  - a. Potential aquifer recharge regions
  - b. Areas of high evapotranspiration (ET)
- 3. Build confidence in models via thorough validation against observations
- 4. Perform ad-hoc high-resolution hydrologic simulations in specific basins to support capture and recharge solutions
- 5. Assess future changes of key water balance variables using climate model outputs under different greenhouse gas emission scenarios

## Collection of Hydrometeorological Datasets

#### Hydrometeorological Observations

| Dataset                                      | Variables                                                             | Resolution    |
|----------------------------------------------|-----------------------------------------------------------------------|---------------|
| Analysis of Record for<br>Calibration (AORC) | Precipitation<br>Air Temperature<br>Other Meteorological<br>Variables | 1-km, 1-hour  |
| FLUXNET Tower                                | Evapotranspiration                                                    | Point, 30-min |
| USGS Gages                                   | River Discharge                                                       | Point, 15-min |
| SNOTEL Stations                              | Snow Water<br>Equivalent                                              | Point, 1-day  |

#### **Hydrologic Models**

- National Water Model (NWM; available from NOAA at 1 km, 1 hr)
- Noah-MP (applied by the team at 4 km, 1 hr)

**Period**: 1980 - 2023

#### **USGS Hydrologic Unit Code 8 (HUC8)**



#### Credit: Hayley Corson-Dosch/USGS VizLab





Water Budget

RE = Recharge P = Precipitation ET = Evapotranspiration R = Runoff

> Applied at multiple time scales at each 1- or 4-km pixel and HUC8 basin

### Examples of Observations and Simulations

#### Mean annual AORC precipitation (1980-2020)

Mean annual NWM ET (1980-2020)



# Building Confidence in Models

#### Validation of ET against eddy covariance estimates



## **Building Confidence in Models**

#### Validation of river discharge



# High-Resolution Land Surface Modeling in Arizona Historical Simulations

- To estimate the water budget (including ET, runoff, recharge, SWE, etc.) during 1980-2020 in the HUC8 basins over Arizona.
- To find the factors that dominate the spatial and temporal variations in recharge during the historical period.

#### **Future Simulations**

- To project the recharge in the middle and end of this century under different emission scenarios.
- To understand the effect of future climate change on recharge.

### Historical Simulations

| Model        | Noah-MP which can represent surface ponding and dynamic root water uptake                                                                                     |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Domain       | HUC8 watersheds (see blue lines in the right figure) over Arizona                                                                                             |
| Period       | 1980-2020                                                                                                                                                     |
| Resolution   | 4 km (spatial) and 1 hr (temporal)                                                                                                                            |
| Forcing data | CONUS404 (dynamically downscaled<br>results of ERA5), AORC (based on multiple<br>observation and analysis datasets), and<br>IMERG (satellite data, 2001-2020) |



## Model Performance in Simulating ET

 $ET_{wb} \approx P - RF_{usgs}$ 



- For most of the basins, the model's relative bias is between -10% and 10%.
- $ET_{wb}$  and  $ET_{model}$  are very close, with R=0.81.

## Model Performance in Simulating Runoff



• The model can reproduce the annual runoff for the Verde (Salt) Basin with R=0.86 (0.93) and bias=11% (33%)

### Recharge Efficiency and Its Historical Trend



#### Recharge Efficiency = Recharge / P x 100

 Very similar mean areal recharge efficiency (2.79% for CONUS404 and 2.89% for AORC)

 Both simulations suggest that recharge efficiency has significantly decreased by about 0.1% per year



# Hydroclimate Team Summary

- 1. Collection of high-resolution point and gridded hydrometeorological observations across Arizona
- 2. Validation of the latest National Water Model retrospective simulations and Noah-MP ad-hoc simulations in AZ
- 3. Generation of recharge maps from models and observations for the historical period
- 4. Estimation of changes in water balance components under future climate scenarios