

Whole Farm Management for Efficient Water Use

Paul W. Brown
Extension Specialist, Biometeorology
Associate Director, Agriculture & Natural Resource Programs
Arizona Cooperative Extension, College of Agriculture & Life Sciences
University of Arizona

Irrigated Agriculture in Arizona

Irrigated Area: ~850,000 Acres

Northwest AZ

12% of Ag

Elevation: 400-3000'

Rain: 4-8"

Surface Water (CO River)

Groundwater ("Inland")

Southwest AZ

25% of Ag

Elevation: < 600'

Rain: <4"

Surface Water

Arizona Irrigation Systems

Irrigation System Efficiency

Field/Application Efficiency

Ea = 100*Vp/Vf

Where:

Vp: Crop irrigation need

Vf: Water delivered to field

Crop irrigation need may include beneficial uses such as water required for leaching, germination, cooling, etc.

Source: Howell, T. 2003. Irrigation Efficiency. In: Encyclopedia of Water Science. 2003. Marcel Dekker Inc.

Yuma Case Study Report

Agricultural water use has decline ~18 % since 1975

Transition to Vegetable/Multi-Crop Production

Winter-centric production systems Second crop often wheat/melons

Reduction in summer irrigation

Level Furrow/Basin Irrigation

High flows, rapid advance of water limits deep percolation

Source: Howell, T. 2003. Irrigation Efficiency. In: Encyclopedia of Water Science. 2003. Marcel Dekker Inc.

Elimination of Subbing

Sprinklers have replaced subbing as a means of establishing vegetable crops. Water used to establish vegetable crops has decreased by 50-75%.

Improved Surface Irrigation Efficiency Yuma County

Surface Irrigation Statewide

Source: HDR Engineering Tech Memorandum to Central AZ Project

Practice	Farms	Acres
Lined Ditches/Pipes*	1558	688,502
Laser Leveling**	579	391,499
Diking**	397	155,510
Reduced Set Times**	469	97,039
Tailwater Systems**	147	59,545
Alternate Row	87	46,096

2008 Farm & Ranch Survey; USDA, NASS *Total Farms: 2064; Acres = 764655 **Total: Farms = 1167; Acres = 621,190

Sprinkler Irrigation Trends

Center Pivots

- Improved efficiency
 - Automation, nozzle improvement
 - LEPA; LESA; LPIC
 - Precision technologies
- Most popular in SE Arizona

Solid Set

- Growing popularity in SW Arizona
 - Crop establishment
 - Wide bed produce
 - Wheat production

Southeast Arizona Tree Nut Production

Nut trees have replaced cotton & alfalfa as a way to improve farm profitability in Southeast Arizona. Most new plantings use drip/micro-irrigation to apply water.

Decisions Regarding Irrigation Timing

USDA 2013 Farm and Ranch Irrigation Survey

Limited use of scientific scheduling methods

Source: Farm Credit Services Southwest, 2004, https://www.fcssw.com/en/About-Us/~/media/Files/Newsletter/spring04.ashx

Improving Irrigation Efficiency **Barriers**

	Barriers to Irrigation Improvements	Farms	Land (a)	Water (a-ft)
\rightarrow	Landlord will not share costs	297	192,388 (23%)	919,114 (17%)
\Rightarrow	Improvement won't cover install. costs	560	124,760 (15%)	572,066 (11%)
	Cannot finance improvements	1209	121,436 (14%)	519,227 (10%)
	Will not be farming long enough	243	97,354 (10%)	520,142 (10%)
	₂Uncertaintysabout water future	598 Values in	114.054 (13%) () represent % of Irrigated I	443,406 (8%) and of % of ag water use

- -Remote Land Ownership
- -Poor Economic Return
- -Financing
- -Urbanization/Age
- -Water Future

NRCS EQIP for irrigation improvements (since 1997): \$74 Million NRCS EQIP for sprinkler/drip irrigation: \$42 Million on 182,000 acres

