The Groundwater Visibility Initiative: Integrating Groundwater and Surface Water Management Report of Workshop held in Denver, Colorado, April 28, 2016

For most of the public, groundwater is out of sight and out of mind. Groundwater, and the boundaries that define it as a water management unit, are physically invisible to humans. Our inability to readily see groundwater contributes to groundwater's lack of visibility in many discussions of water policy, governance, and management.

In many parts of the world, the failure to manage groundwater in an integrated, sustainable way could have severe consequences. Depleted and/or contaminated water reserves contribute to regional conflicts and create public health hazards. Subsidence causes significant damage to critical infrastructure such as roads and levees. Entire economies, based on water dependent agriculture and industry, are at risk.

Groundwater constitutes more than 95% of Earth's unfrozen freshwater. Given its vast reserves, broad geographical distribution, generally good quality and frequent availability at or near the point-of-use, it has become the foundation of many water management systems for drinking water, irrigation, and municipal and industrial uses. Still, and despite its importance, groundwater is largely undervalued and narrowly perceived. Even while the interrelationship between groundwater and surface water is well established by science, institutions at all levels struggle to effectively incorporate these concepts into laws, regulations, and sustainable management.

An archaic piece of British common law, brought to the new world with the settlers, contributes to the problem. Under these laws, the owner of a piece of property owns the water beneath it. This created situations nearly equivalent to telling a group of preschoolers that whoever can get their straws in the cup first will get the fruit punch. An 1861 court case in Ohio [Frazier v. Brown, 12 Ohio St. 294 (1861)] famously concluded that groundwater was too "secret, occult, and concealed" to regulate. While water law has advanced somewhat, the aura of mystery remains. Even today, water dowsers (sometimes called water witches or diviners) are found using sticks and plumb bobs to suggest places to drill a well.

Recognizing a critical need to elevate groundwater discussions, the American Water Resources Association (AWRA) and the National Ground Water Association (NGWA) joined forces to launch a Groundwater Visibility Initiative in early 2016.

These organizations understand the stakes for properly managing groundwater could not be higher. Over two billion people get drinking water from groundwater. In the USA, about 38% of the population regularly depends upon groundwater for its drinking water supply and that same percentage is groundwater's portion of irrigation water. Rural areas are often 100% dependent on groundwater. Proper groundwater management may even contribute to improved national security. Corporate users have become very aware of the importance of the resource. Consider this statement about groundwater depletion from a decidedly corporate vantage point in a recent report by the Earth Security Group:

"The rapid depletion of aquifers is a systemic risk to one billion people in the world's growing economies. Aquifers are shared across national borders and have the potential to spark conflict. Companies must act beyond their site operations and help improve groundwater governance if they are to ensure their sustainable growth." (Foreword, 'Global Depletion of Aquifers', Chapter 4 in Earth Security Index 2016 Report, http://tinyurl.com/zdot9dp)

The Groundwater Visibility Initiative

In April 2016, AWRA and NGWA convened 24 water experts from across the United States and Canada in a day-long *Groundwater Visibility Initiative* workshop. This seminal event sought to discuss the best way to elevate groundwater's status in the international discourse on water policy, governance, and management by crafting recommendations for action.

The attendees tackled an agenda consisting of provocative talks by recognized experts, panel discussions, and breakout sessions. They articulated ways to better integrate groundwater into integrated water resources management and incorporate it into policies for agriculture, energy, environment, land-use planning, and urban development. The workshop agenda is listed in Attachment 1 and participants in Attachment 2.

Workshop Findings and Recommendations

The following is a summary of the workshop findings and recommendations.

1. Governing and managing groundwater requires working with people

Achieving groundwater sustainability requires societal decisions that involve tradeoffs and should be made through informed, transparent public participation. Many of the current ideas for addressing groundwater sustainability fall within the broad concept of groundwater governance, which focuses on promoting responsible collective action. Governance is an important part of resilient aquifer management.

Multidisciplinary teams and alliances among multiple governance/ management associations can provide greater expertise to solve these problems. Communications programs are required to help overcome misperceptions about groundwater and surface water interactions and demonstrate their connectivity. Examples of good management and governance should be provided to decisionmakers and other stakeholders.

2. Data and information are key

Better data on water withdrawals and consumptive use are needed for both groundwater and surface water management. Different aquifers behave differently because of different geology, extent, and hydroclimatic settings. This means monitoring and evaluation at appropriate spatiotemporal scales are necessary to understand trends in both quality and quantity. Data collection and analyses should be transparent.

3. Some "secrets" remain

Groundwater and climate are inextricably linked through recharge rates and demand. Science needs to improve understanding of climate impacts on both supply (quantity and quality) and demand for groundwater and its interaction with surface water.

Long lag times for groundwater impacts and system responses must be accommodated for and understood.

4. We need to take care of what we have

Ensure that planning and investment incorporate infrastructure rehabilitation and maintenance.

5. Effective groundwater management is critical to an integrated water management portfolio that is adaptive and resilient to drought and climate change

A diverse water management portfolio that includes groundwater, surface water, conservation, recycling, etc., will contribute to greater water security and less risk. Groundwater can support instream flows, ecosystems, recreation, and sustainable supply for water users. Groundwater also contributes to the quality of surface water and mediates its temperature.

Managed aquifer recharge is a potentially critical element of drought mitigation planning. Groundwater systems should be analyzed for their resilience and vulnerability to climate perturbations. Projects should be reviewed from a longterm resilience perspective not a short-term one. In this context, groundwater management is especially important as a tool to buffer extremes, even if groundwater is not necessarily a readily-available backup supply.

Models need to be reviewed and adaptive. Collaborative modeling can be an effective tool to obtain buy-in from stakeholders.

In a fully integrated system, repurposing dams and flood control operations for recharge is another opportunity.

6. To be robust, agriculture, energy, environment, land-use planning, and urban development sectors policies must incorporate groundwater considerations

Groundwater problems typically do not have a single solution. Return flows from different sectors have significant intersection with groundwater management issues. Planning and management need to be integrated across all of the sectors. This means matching quality, quantity and use.

Land-use planning can be used to protect or enhance base flow of streams, floodplain management, and groundwater recharge. Agricultural and open space districts can be an opportunity for a win-win; for example, by overlaying zones for scenic protection and agricultural preservation to enhance recharge.

Water managers should consider innovative ways of education and outreach to the agricultural sector, including: 1) the key role of agricultural extension agents; 2) subsidy-based conservation programs; 3) self-regulation with performance-based criteria; 4) "grow-off challenges" through crop yield competitions with guarantees; 5) early adapter programs; and 6) professionally facilitated communication.

Call to Action

The Denver workshop is intended as only a first step in efforts by NGWA, AWRA, and the workshop participants to increase groundwater's visibility in scientific, management, and policy dialogues. The following are recommended next steps:

- 1. Encourage fellow professionals to present the Groundwater Visibility Initiative (GVI) to their respective professional societies for possible adoption and other actions.
- 2. Present the GVI to non-professional groups.
- 3. Build a coalition with other professional societies and similar organizations to support the GVI.
- 4. Distribute the GVI statement to members of Congress and appropriate state and local political leaders and agency personnel; discuss the GVI with the aforementioned persons.
- 5. Give presentations and convene sessions on GVI-related topics at state, regional, national, and international meetings.
- 6. Write Op-Ed columns and articles in print and other media; engage journalists.

7. Produce journal articles on the GVI topics.

Now is the time to disabuse society of its 'secret, occult and concealed' approach to groundwater. The path identified above will help provide the tools to do just that. The hard work of making groundwater visible has just begun.