Potable Reuse for Inland Applications: Pilot Testing Results Tucson, AZ

Water Resource Research Center - Brownbag October 26, 2016

Presenters:

Jeff Biggs, Tucson Water Michael Hwang, CH2M

Agenda

- Background
- New Potable Reuse Treatment Scheme
- Pilot Site Selection and Design
- Water Quality Results
- Conclusions

BACKGROUND

Residuals Management Can be a Major Challenge for Inland Reuse Programs

Orange County Water District's Groundwater Replenishment System

Major coastal programs have the benefit of an ocean outfall

Residuals management costs for inland facilities can equal or exceed main treatment facility costs

Transition to Renewable Water Supplies

Long History of Water Reuse in Tucson

Tucson Water has been producing and delivering reclaimed water since 1984
Reclaimed water delivered to nearly 1,000 sites
18 golf courses
65 schools
50 parks
700+ single family homes

Seasonal variation in available recycled water impacts potable reuse concept

Seasonal variation in available recycled water impacts potable reuse concept

Seasonal variation in available recycled water impacts potable reuse concept

Recycled Water Master Plan Recommendations

RECYCLED

MASTER PLAN

Continue to invest in the Reclaimed Water System to maintain efficient service to existing and potential future customers Pursue full utilization of the City's recycled water entitlement through potable reuse to diversify renewable supplies

Phased Implementation Steps for a Potable Reuse Program

WRRF 13-09 supplements early implementation efforts for Tucson's Recycled Water Program

Considering Alternatives to "Full Advanced Treatment"

What treatment is needed?

- MF-RO-UVAOP has been shown to be effective
- Treatment alternatives could increase the feasibility of potable reuse at inland locations while providing:
 - Multiple barriers for organics and pathogens
 - Reduction of salt concentrations
 - Reduced energy consumption
 - Mitigated concentrate disposal

Technical, financial, and public outreach factors will determine treatment process decisions

NEW POTABLE REUSE TREATMENT SCHEME

Project	Location	Type of Potable Reuse	Year in Operation	Capacity (MGD)	Current Advanced Treatment Process
Montebello Forebay, CA	Coastal	GW recharge via spreading basins	1962	44	$GMF + Cl_2 + SAT$ (spreading basins)
Windhoek, Namibia	Inland	Direct potable reuse	1968	5.5	O_3 + Coag + DAF + GMF + O_3/H_2O_2 + BAC + GAC + UF + CI_2
UOSA	Inland	Surface water augmentation	1978	54	Lime + GMF + GAC + CI_2
Hueco Bolson, El Paso, TX	Inland	GW recharge via direct injection and spreading basins	1985	10	Lime + GMF + Ozone + GAC + Cl_2
Clayton County, GA	Inland	Surface water augmentation	1985	18	CI_2 + UV disinfection + SAT (wetlands)
West Basin, El Segundo, CA	Coastal	GW recharge via direct injection	1993	12.5	MF + RO + UVAOP
Scottsdale, AZ	Inland	GW recharge via direct injection	1999	20	MF + RO + Cl2
Gwinnett County, GA	Inland	Surface water augmentation	2000	60	Coag/Floc/Sed + UF + Ozone + GAC + Ozone
NEWater, Singapore	Coastal	Surface water augmentation	2000	146 (5 plants)	MF + RO + UV disinfection
Los Alamitos, CA	Coastal	GW recharge via direct injection	2006	3.0	MF + RO + UV disinfection
Chino GW Recharge, CA	Inland	GW recharge via spreading basins	2007	18	$GMF + Cl_2 + SAT$ (spreading basins)
GWRS, Orange County, CA	Coastal	GW recharge via direct injection and spreading basins	2008	70	MF + RO + UVAOP + SAT (spreading basins for a portion of the flow)
Queensland, Australia	Coastal	Surface water augmentation	2009	66 (3 plants)	MF + RO + UVAOP
Arapahoe County, CO	Inland	GW recharge via spreading	2009	9	SAT (via RBF) + RO + UVAOP
Loudoun County, VA	Inland	Surface water augmentation	2009	11	MBR + GAC + UV
Big Spring ,TX	Inland	Direct potable	2013	1.8	MF + RO + UVAOP

Source: Adapted from Schimmoller et al. (2014), Drewes and Kahn (2010); Asano et al. (2007)

Notes: ARR = Aquifer Recharge and Recovery; BAC = Biological Activated Carbon filtration; CI_2 = Chlorine Disinfection; Coag = Coagulation; DAF = Dissolved Air Flotation; GAC = Granular Activated Carbon; GMF = granular media filtration; GW = groundwater; H_2O_2 = Hydrogen Peroxide; MF = Microfiltration; O_3 = Ozone; RBF = riverbank filtration; RO = Reverse Osmosis; SAT = Soil Aquifer Treatment; UF = Ultrafiltration; UV = Ultraviolet; UVAOP = UV Advanced Oxidation

Project	Location	Type of Potable Reuse	Year in Operation	Capacity (MGD)	Current Advanced Treatment Process		
Montebello Forebay, CA	Coastal	GW recharge via spreading basins	1962	44	GMF + Cl ₂ + SAT (spreading basins)		
Windhoek, Namibia	Inland	Direct potable reuse	1968	5.5	O_3 + Coag + DAF + GMF + O_3/H_2O_2 + BAC + GAC + UF + CI_2		
UOSA	Inland	Soil Aquifer Trea	atment (SAT) s	uccessfully		
Hueco Bolson, El Paso, TX	Inland	implemented for			+ Cl ₂		
Clayton County, GA	Inland				vetlands)		
West Basin, El Segundo, CA	Coastal	 Advanced treatment 	nent noi	alway	s required due		
Scottsdale, AZ	Inland	to good removal	of orga	inics ar	nd pathogens		
Gwinnett County, GA	Inland	Surface water augmentation	2000	60	Coag/Floc/Sed + UF + Ozone + GAC + Ozone		
NEWater, Singapore	Coastal	Surface water augmentation	2000	146 (5 plants)	MF + RO + UV disinfection		
Los Alamitos, CA	Coastal	GW recharge via direct injection	2006	3.0	MF + RO + UV disinfection		
Chino GW Recharge, CA	Inland	GW recharge via spreading basins	2007	18	GMF + Cl_2 + SAT (spreading basins)		
GWRS, Orange County, CA	Coastal	GW recharge via direct injection and spreading basins	2008	70	MF + RO + UVAOP + SAT (spreading basins for a portion of the flow)		
Queensland, Australia	Coastal	Surface water augmentation	2009	66 (3 plants)	MF + RO + UVAOP		
Arapahoe County, CO	Inland	GW recharge via spreading	2009	9	SAT (via RBF) + RO + UVAOP		
Loudoun County, VA	Inland	Surface water augmentation	2009	11	MBR + GAC + UV		
Big Spring ,TX	Inland	Ind Direct potable 2013 1.8 MF + RO + U			MF + RO + UVAOP		

Source: Adapted from Schimmoller et al. (2014), Drewes and Kahn (2010); Asano et al. (2007) Notes: ARR = Aquifer Recharge and Recovery; BAC = Biological Activated Carbon filtration; CI_2 = Chlorine Disinfection; Coag = Coagulation; DAF = Dissolved Air Flotation; GAC = Granular Activated Carbon; GMF = granular media filtration; GW = groundwater; H_2O_2 = Hydrogen Peroxide; MF = Microfiltration; O_3 = Ozone; RBF = riverbank filtration; RO = Reverse Osmosis; SAT = Soil Aquifer Treatment; UF = Ultrafiltration; UV = Ultraviolet; UVAOP = UV Advanced Oxidation

Project	Location	Type of Potable Reuse	Year in Operation	Capacity (MGD)	Current Advanced Treatment Process		
Montebello Forebay, CA	Coastal	GW recharge via spreading basins	1962	44	GMF + CI_2 + SAT (spreading basins)		
Windhoek, Namibia	Inland	Direct potable reuse	1968	5.5	O_3 + Coag + DAF + GMF + O_3/H_2O_2 + BAC + GAC + UF + CI_2		
UOSA	Inland	Surface water augmentation	1978	54	$Lime + GMF + GAC + Cl_2$		
Hueco Bolson, El Paso, TX	Inland	GW recharge via direct injection and spreading basins	1985	10	Lime + GMF + Ozone + GAC + Cl_2		
Clayton County, GA	Inland	Surface water augmentation	1985	18	Cl2 + UV disinfection + SAT (wetlands)		
West Basin, El Segundo, CA	Coastal	GW recharge via direct injection	1993	12.5	MF + RO + UVAOP		
Scottsdale, AZ	Inland	GW recharge via direct injection	1999	20	MF + RO + Cl2		
Gwinnett County, GA	Inland	Surface water augmentation	2000	60	Coag/Floc/Sed + UF + Ozone + GAC + Ozone		
NEWater, Singapore	Coastal	Surface water augmentation	2000	146	ME + RO + UV disinfection		
Los Alamitos, CA	Coa: •	GAC-based treatr	nent als	<mark>o very</mark>	successful		
Chino GW Recharge, CA	Inla 🗕	Provided good ad	sorptior	n of org	anics and often ins)		
GWRS, Orange County, CA	Coa	sustained remova	I throug	h biolo	gical filtration		
Queensland, Australia	Coastal	Surface water augmentation	2009	(3 plants)	MF + RO + UVAOP		
Arapahoe County, CO	Inland	GW recharge via spreading	2009	9	SAT (via RBF) + RO + UVAOP		
Loudoun County, VA	Inland	Surface water augmentation	2009	11	MBR + GAC + UV		
Big Spring ,TX	Inland	Direct potable	2013	1.8	MF + RO + UVAOP		

Source: Adapted from Schimmoller et al. (2014), Drewes and Kahn (2010); Asano et al. (2007) Notes: ARR = Aquifer Recharge and Recovery; BAC = Biological Activated Carbon filtration; CI_2 = Chlorine Disinfection; Coag = Coagulation; DAF = Dissolved Air Flotation; GAC = Granular Activated Carbon; GMF = granular media filtration; GW = groundwater; H_2O_2 = Hydrogen Peroxide; MF = Microfiltration; O_3 = Ozone; RBF = riverbank filtration; RO = Reverse Osmosis; SAT = Soil Aquifer Treatment; UF = Ultrafiltration; UV = Ultraviolet; UVAOP = UV Advanced Oxidation

Ch2m.

Project	Location	Type of Potable Reuse	Year in Operation	Capacity (MGD)	Current Advanced Treatment Process	
Montebello Forebay, CA	Coastal	^{GW r} • Reverse Os	mosis (RO) is	a common g basins)	
Windhoek, Namibia	Inland	Direc treatment a	oproach	for po	table reuse	
UOSA	Inland		disnos			
Hueco Bolson, El Paso, TX	Inland	and s achieved at	coastal			
Clayton County, GA	Inland	Surfa	000310		(wetlands)	
West Basin, El Segundo, CA	Coastal	GW recharge via direct injection	1993	12.5	MF + RO + UVAOP	
Scottsdale, AZ	Inland	GW recharge via direct injection	1999	20	MF + RO + Cl2	
Gwinnett County, GA	Inland	Surface water augmentation	2000	60	Coag/Floc/Sed + UF + Ozone + GAC + Ozone	
NEWater, Singapore	Coastal	Surface water augmentation	2000	146 (5 plants)	MF + RO + UV disinfection	
Los Alamitos, CA	Coastal	GW recharge via direct injection	2006	3.0	MF + RO + UV disinfection	
Chino GW Recharge, CA	Inland	GW recharge via spreading basins	2007	18	GMF + Cl_2 + SAT (spreading basins)	
GWRS, Orange County, CA	Coastal	GW recharge via direct injection and spreading basins	2008	70	MF + RO + UVAOP + SAT (spreading basins for a portion of the flow)	
Queensland, Australia	Coastal	Surface water augmentation	2009	66 (3 plants)	MF + RO + UVAOP	
Arapahoe County, CO	Inland	GW recharge via spreading	2009	9	SAT (via RBF) + RO + UVAOP	
Loudoun County, VA	Inland	Surface water augmentation	2009	11	MBR + GAC + UV	
Big Spring ,TX	Inland	Direct potable	2013	1.8	MF + RO + UVAOP	

Source: Adapted from Schimmoller et al. (2014), Drewes and Kahn (2010); Asano et al. (2007) Notes: ARR = Aquifer Recharge and Recovery; BAC = Biological Activated Carbon filtration; CI_2 = Chlorine Disinfection; Coag = Coagulation; DAF = Dissolved Air Flotation; GAC = Granular Activated Carbon; GMF = granular media filtration; GW = groundwater; H_2O_2 = Hydrogen Peroxide; MF = Microfiltration; O_3 = Ozone; RBF = riverbank filtration; RO = Reverse Osmosis; SAT = Soil Aquifer Treatment; UF = Ultrafiltration; UV = Ultraviolet; UVAOP = UV Advanced Oxidation

Potable Reuse Costs: RO-based vs. GAC-based

Source: Figure taken from WRRF 10-01. Figures are WateReuse Research Foundation's Intellectual Property

- GAC-based treatment less expensive
- High treatment cost for RO-based treatment due to costs for concentrate disposal, especially at inland locations
- Pretreatment to RO typically MF and also expensive
- SAT costs (not shown), are site specific but assumed to be reasonable with right geologic conditions

New Treatment Approach for Potable Reuse

- SAT, GAC and RO-based treatment all successful around to world for potable reuse
- RO-based treatment or blending typically implemented when TDS reduction is *also* required
- Cost control of RO-based treatment achievable through:
 - Alternative pretreatment to MF
 - Blending, slip-stream RO, or use of nanofiltration (NF)
- Hybrid treatment approach combining SAT, NF and GAC was identified and tested as part of WRRF 13-09

New Treatment Approach for Potable Reuse

Applying Proposed Treatment Approach in Tucson, AZ

Source: Tuc

Monitor Well

Extraction Well

110

in Con

Landfill

Stream Channel Recharge Basins

Polishing/Settling Basin

Source: Tucson Water

WRF Effluent

Tucson Water Sweetwater Recharge Facilities

- SRF permitted to recharge and recover 13,000 ac-ft of reclaimed water to meet non-potable demands
- 11 recharge basins (38 acres)
- 8 south basins installed first and well documented:
 - Percolation provides effective filtration and pathogen removal (SAT)
 - Alternating wet & dry cycles at SRF facilitate aerobic & anaerobic SAT (Fox, et al., 2001)

Pilot Location Selection

- Monitoring Well WR-069B selected to be used to supply pilot
 - Close proximity to recharge basins
 - 14-day travel time (Fox, et al., 2001)
- Well Design
 - Constructed in 1991
 - Casing extends 200 feet below land surface
 - 1.5 ft/day average infiltration at adjacent recharge basins

PILOT GOALS & FACILITIES

Pilot Testing Goals

• Primary Goal:

Test the viability of the proposed treatment scheme for Tucson Water's future Potable Reuse Project through water quality testing and treatment process performance monitoring

Secondary Goals:

- 1. Test the viability of short-term SAT as a pretreatment approach to NF
- 2. Test ozone for oxidation of CECs
- 3. Determine GAC regeneration requirements

Pilot Facilities – Overview

Equipment

 3 equipment skids provided by UA for NF, Ozone and GAC

Operations

- Period: Oct 2014 April 2015
- SAT/NF operating conditions kept same during entire pilot
- Ozone/GAC operations modified after 3 months
- Phase 1 (3 months):
 - Allow GAC to become BAC
- Phase 2 (3 months):
 - Adjust Ozone dose as needed
 - Compare virgin GAC performance to BAC established during Phase 1

Pilot Facilities – NF Hybrid Design

	Parameter	Unit	Value	
	Number of Stages	#	2	
	Pressure Vessel Array		2:1	
	Number of Pressure Vessels	#	6	
	Elements per Vessel	#	3	
	Total Elements	#	18	L
	Stage 1 Element		Dow NF 270-2540	
	Stage 2 Element		Dow NF 90-2540	ζ Γ
	Design Recovery	%	82.4%	
_	Average Design Flux	afd	13.4	J
	Bypass Flow Percentage	%	40%	
	Total Feed Flow	gpm	8.8	
	Bypass Flow	gpm	3.1	
	NF Feed Flow	gpm	5.7	
	NF Permeate Flow	gpm	4.7	
	NF Concentrate Flow	gpm	1.0	<u>с</u>
	Feed TDS	mg/L	750	
	Permeate TDS	mg/L	312	
	Combined Product TDS	mg/L	487	J
	Antiscalant Product		Avista Vitec 4000	-
	Antiscalant Dose	mg/L	2 – 5	

2-Stage Hybrid NF System

82.5% Recovery @ 13.4 gfd

40% Feed Bypass

Product Water to meet 500 mg/L TDS (Secondary MCL)

Pilot Facilities – Ozone & GAC

• Ozone

- Containerized Xylem (Wedeco) UV / AOP trailer provided by University of Arizona
- UV and Peroxide components were not used
- Skid includes onsite O₃ generator
- Target O_3 Dose = 0.5 1.0 mg/L
- Key to balance oxidation of CECs while mitigating bromate formation

• GAC Skid

- 4 x 4-inch column GAC pilot skid provided by U of A
- Calgon F400M and Norit GAC 400 used
- Both GACs tested in Phase 1 (2 columns total)
- 2 additional columns loaded with virgin GAC in Phase 2
- Design loading rate = $3 \text{ gpm} / \text{ft}^2$ (~10 min EBCT)

WATER QUALITY RESULTS

Water Quality Testing

Parameter Lab Sample Location and Frequency											
		Agua Nueva Effluent (Sweetwater Recharge Basin Feed)	Post-SAT Effluent (Shallow Monitoring Well)	NF Feed (after Cartridge Filtration)	NF Permeate	NF Concentrate	Ozone Effluent	BAC1 Calgon Effluent (Phase I and II)	BAC2 Norit Effluent (Phase I and II)	BAC3 Calgon Effluent (Phase II only)	BAC4 Norit Effluent (Phase II only)
Sample Designation		\$1	S2	S3	S4	S5	S6	S7	S8	S9	S10
Tucson Water Designation		510	Well WR-069B	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
рН	Field			Daily		Daily					
Temperature	Field			Daily							
Conductivity	Field			Daily	Daily	Daily					
SDI	Field		3x/week	3x/week							
Ozone Residual	Field						Weekly				
Turbidity	Field		Weekly								
TSS	TW		Weekly			Biweekly					
Alkalinity	TW	Monthly**	Weekly		Weekly	Biweekly					
TDS	TW	Monthly**	Weekly		Weekly	Biweekly					
тос	TW	Biweekly**	Weekly		Weekly		Weekly	Weekly	Weekly	Weekly	Weekly
Total Nitrogen	TW	Monthly**	Biweekly		Biweekly	Biweekly					
Total Phosphorus	TW	Monthly**	Biweekly		Biweekly	Biweekly					
Bromide	TW		Biweekly		Biweekly	Biweekly					
Calcium	TW		Biweekly		Biweekly	Biweekly	Fie	d Para	meters		
Magnesium	TW		Biweekly		Biweekly	Biweekly					
Sodium	TW		Biweekly		Biweekly	Biweekly	Met	tals. Sa	lts. Nu	trients	
Sulfate	TW		Biweekly		Biweekly	Biweekly	—	^			
Chloride	TW		Biweekly		Biweekly	Biweekly	• I ra	ce Orga	anics ((JECS)	
Boron	TW		Biweekly		Biweekly	Biweekly	N L'AL				
Silica	TW		Biweekly		Biweekly	Biweekly	• INIT	osamin	es & B	romate	•
Barium	TW		Biweekly								
Strontium	TW		Biweekly				• Pat	nogens		organis	sms
UVT-254	UA		Weekly		Weekly		WEEKIY	WEEKIY	WEEKIY	WEEKIY	WEEKIY
Bromate	UA		Monthly		Monthly		Biweekly	Biweekly	Biweekly	Biweekly	Biweekly
CECs	UA	Monthly	Biweekly		Biweekly		Biweekly	Biweekly	Biweekly	Biweekly	Biweekly
EEM	UA	Monthly	Biweekly		Biweekly		Biweekly	Biweekly	Biweekly	Biweekly	Biweekly
NDMA	UA	Monthly	Biweekly					Biweekly	Biweekly	Biweekly	Biweekly
Heterotrophic Plate Counts (5-day)	TW		Biweekly			Biweekly		Biweekly	Biweekly	Biweekly	Biweekly
Total Coliform	TW		Monthly		Monthly			Monthly	Monthly		
E. Coli	TW		Monthly		Monthly			Monthly	Monthly		
Enteric Virus	UA	Monthly***	Monthly***				Monthly***		·		
Crypto / Giardia	UA	Monthly***	Monthly***				Monthly***				

Total Organic Carbon (50th percentile)

Total Organic Carbon versus Filtration Bed Volumes

No breakthrough for Calgon BAC after 6 months TOC vs. S7: BAC 1 Effluent (Calgon - P1 & 2) **Bed Volumes** 0.50 0.40 FOC (mg/L) 0.30 **TOC Detection** 0.20 Limit 0.10 Phase 1 Phase 2 -0.00 0 5,000 10,000 15,000 20,000 25,000 30,000 **Bed Volumes**

Breakthrough observed for Norit BAC

Chemicals of Emerging Concern

- 44 CECs monitored <u>All below the detection limit in finished water</u>
- Some CECs are recalcitrant to certain treatment, so multiple barriers is important

2015/04/30	Concentration of	f Trace Org	anics in ng/I						
Compounds	Category	Agua	Well 69B	Ozone	Ozone	BAC C1	BAC C2	BAC C3	BAC C4
		Nueva		Influent	Effluent	(Calgon)	(Calgon)	(Norit)	(Norit)
		Effluent				Effluent	Effluent	Effluent	Effluent
Benzophenone	Industry (paint,	129	< 30	< 16	< 30	< 28	< 29	< 30	< 29
Benzotriazole	De-icing,	4236	4755	4051	2416	< 480	< 480	< 470	< 500
	inhibitor,								
Caffeine	stimulant	< 4.0	< 5.2	< 4.4	< 5.6	< 3.9	< 4.1	< 3.7	< 3.8
Carbamezapine	Anit-epileptic	363	487	126	< 1.6	< 1.6	< 1.5	< 1.5	< 1.5
DEET	Insect repellant	172	7.0	14	< 6.0	< 4.1	< 4.0	< 3.8	< 3.6
Gemfibrozil	cholesterol drug	5.4	< 1.0	< 1.0	< 1.1	< 0.9	< 0.9	< 0.9	< 0.9
Ibuprofen	anti-inflamatory,	< 2.8	< 3.7	< 3.5	< 4.9	< 3.6	< 3.5	< 3.0	< 3.5
Iopamidol	Angiography	29677	3188	913	1395	< 27	< 28	< 26	< 31
Iopromide	x-ray contrast	5465	< 24	< 34	< 24	< 27	< 28	< 26	< 31
Meprobamate	tranquilizer	455	58	28	29	< 10	< 10	< 10	< 10
PFOA	cookware,	2.2	32.3	16.3	15.8	< 0.8	< 0.8	< 0.7	< 0.7
	textiles, clothing,								
PFO S	Stain repellant	< 6.3	256	124	123	< 3.5	< 3.5	< 3.8	< 3.9
Primidone	Anit-epileptic	14	165	90	87	< 4.3	< 5.7	< 4.8	< 4.8
Sucralose	Artifical sweetner	51567	26702	7595	13459	< 220	< 240	< 240	< 250
Sulfamethoxazole	antibiotic	1903	36	15	< 8.0	< 5.0	< 4.9	< 4.5	< 4.9
TCEP	Flame retardant	128	181	31	125	< 22	< 22	< 23	< 23
ТСРР	Flame retardant	715	< 24	129	83	< 22	< 22	< 23	< 23
Triclosan	soap	44	< 12	< 9	< 13	< 13	< 14	< 13	< 14
						10 million 100			

Trace Organics Removal Excitation Emission Matrix Results

Legend

Blank: Milli-Q Water

35

Bromate

- Bromate is a disinfection byproduct from ozone addition
- Bromide concentration in secondary effluent was relatively high (~0.3 mg/L)
- Bromate formation:
 - Significant at O3 doses > 0.5 mg/L (O3:TOC ratio > 1.0)
 - Low at O3 doses < 0.5 mg/L (O3:TOC <1.0)
- Bromate removal by BAC/GAC was significant

Bromate Formation and Removal

NDMA

- NDMA is disinfection byproducts from ozone addition
- NDMA Formation:
 - Very high in the WWTP secondary effluent
 - Excellent removal by SAT (< 10 ng/L)

NDMA

1.2

1.0

NDMA (ng/L) 0.8 0.6 0.4

0.2

0.0

- NDMA is disinfection byproducts from ozone addition
- NDMA Formation:

Pathogen Removal By SAT

Conclusions

Issue	Answer
Do multiple organics barriers provide suitable water quality?	Yes; finished water quality: 1) TOC< 0.25 mg/L 2) All 44 CECs non-detect
Can TDS goal be met with sidestream NF treatment?	Yes, TDS < 500 mg/L consistently met
Can bromate and NMDA formation be controlled?	Yes, both were well below regulated limits: Bromate < 3 µg/L (MCL = 10 µg/L) NDMA < 0.5 ng/L (CA limit 10 ng/L)
Are pathogens adequately removed?	Yes, post-SAT water was non-detect for viruses and protozoa; >4-log removal of viruses by just SAT
Is GAC-based train suitable for potable reuse at Tucson?	Yes and costs are much lower than RO-based train

The Final Report for WRRF 13-09 is currently under review and will be published in 2016

ch2m

Acknowledgements

Team Member	Role
Justin Mattingly, WRRF	WRRF Project Manager
Larry Schimmoller, CH2M	Principal Investigator
Dr. Shane Snyder, UA	Co-PI; Water Quality, Ozone and BAC/GAC Pilot
Dr. Wendell Ela, UA	Co-PI; NF Pilot Operations, Membrane Autopsy
Dr. Bob Arnold, UA	Proxy for Wendell Ela
Michael Hwang, CH2M	Lead Project Engineer
Jim Lozier, CH2M	Membrane Expert
Jeff Biggs, TW	Tucson Water Project Manager
Wally Wilson, TW	Hydrogeologist
Terry Miley, TW	Hydrogeologist
Bruce Prior, TW	Hydrogeologist
Tucson Water Quality Laboratory	Water Quality Analysis
Dan Candelaria, CH2M	Pilot Construction and Operation Support
Ryan Rhoades, Hazen & Sawyer (formerly CH2M)	Project Delivery
Dr. Charles Gerba, UA	Pathogen and ATP Testing
Dr. Ian Pepper, UA	Pathogen and ATP Testing
Dr. Vasaliki Karanikola, UA	Membrane Autopsy
Robert Seaman, UA	NF Pilot Mobilization and Operations
Josh Campbell, UA	NF Pilot Operations
Tarun Anumol, Agilent (formerly UA)	Ozone and BAC/GAC Operations; Water Quality Analysis
Shimin Wu, UA	Ozone and BAC/GAC operations; Water Quality Analysis
Minkyu Park, UA	Ozone and BAC/GAC operations; Water Quality Analysis

CH2M gratefully acknowledges the WateReuse Research Foundation's financial, technical, and administrative assistance in funding and managing the project through which this information was discovered

Ch2m.

41

Questions?

Michael Hwang <u>michael.hwang@ch2m.com</u> Jeff Biggs jeff.biggs@tucsonaz.gov

