Colorado River Management under Uncertainty

Terry Fulp
Deputy Regional Director
Lower Colorado Region

WRRC Annual Meeting
June 24, 2008
Colorado River Management under Uncertainty

- Overview of Colorado River Basin
- Decision-making under Uncertainty
 - Interim Guidelines for the Operation of Lake Powell and Lake Mead
- Future Needs and Directions
Colorado River Basin Hydrology

• 16.5 million acre-feet (maf) allocated annually
• 13 to 14.5 maf of consumptive use annually
• 60 maf of storage
• 15.1 maf average annual “natural” inflow into Lake Powell over past 100 years
• Inflows are highly variable year-to-year
Natural Flow
Colorado River at Lees Ferry Gaging Station, Arizona
Calendar Year 1906 to 2005

Provisional data, subject to change

RECLAMATION
Colorado River Basin Storage
(as of June 15, 2008)

<table>
<thead>
<tr>
<th>Current Storage</th>
<th>Percent Full</th>
<th>MAF</th>
<th>Elevation (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Powell</td>
<td>58%</td>
<td>14.14</td>
<td>3623</td>
</tr>
<tr>
<td>Lake Mead</td>
<td>46%</td>
<td>12.03</td>
<td>1106</td>
</tr>
<tr>
<td>Total System Storage</td>
<td>57%*</td>
<td>33.77</td>
<td>NA</td>
</tr>
</tbody>
</table>

Total system storage was 33.81 maf or 57% this time last year
2008 Upper Colorado Projected Apr–Jul Inflow (mid-month June forecast)

- Flaming Gorge – 66%
- Blue Mesa – 156%
- Navajo – 127%
- Lake Powell – 113%
State of the System (1999-2008)

<table>
<thead>
<tr>
<th>WY</th>
<th>Unregulated inflow into Powell % of Average</th>
<th>Powell and Mead Storage, maf</th>
<th>Powell and Mead % Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>109</td>
<td>47.59</td>
<td>95</td>
</tr>
<tr>
<td>2000</td>
<td>62</td>
<td>43.38</td>
<td>86</td>
</tr>
<tr>
<td>2001</td>
<td>59</td>
<td>39.01</td>
<td>78</td>
</tr>
<tr>
<td>2002</td>
<td>25</td>
<td>31.56</td>
<td>63</td>
</tr>
<tr>
<td>2003</td>
<td>52</td>
<td>27.73</td>
<td>55</td>
</tr>
<tr>
<td>2004</td>
<td>49</td>
<td>23.11</td>
<td>46</td>
</tr>
<tr>
<td>2005</td>
<td>104</td>
<td>27.24</td>
<td>54</td>
</tr>
<tr>
<td>2006</td>
<td>72</td>
<td>25.80</td>
<td>51</td>
</tr>
<tr>
<td>2007</td>
<td>68</td>
<td>24.43</td>
<td>49</td>
</tr>
<tr>
<td>*2008</td>
<td>106</td>
<td>27.38</td>
<td>55</td>
</tr>
</tbody>
</table>

Based on June 24 Month Study and June mid-month inflow forecast
Natural Flow
Colorado River at Lees Ferry Gaging Station, Arizona
Calendar Year 1906 to 2005

Provisional data, subject to change

RECLAMATION
Annual Natural Flow at Lees Ferry
Tree-ring Reconstruction (Meko et al., 2007)
25-Year Running Mean
Interim Guidelines for the Operation of Lake Powell and Lake Mead

- Specifies a coordinated operation for the full operating range of Lake Powell and Lake Mead in order to better balance the water supply between the two basins
- Encourages more efficient and flexible use of Colorado River water in the Lower Basin by providing a “market-driven” mechanism for water conservation and transfers
- Implements a strategy for shortages in the Lower Basin, including a provision for additional shortages if warranted
- In place for an interim period (through 2026) to gain valuable operational experience
Lake Powell & Lake Mead Operational Diagrams

<table>
<thead>
<tr>
<th>Lake Powell Elevation (feet)</th>
<th>Lake Powell Operational Tiers</th>
<th>Lake Powell Storage (maf)</th>
<th>Lake Mead Elevation (feet)</th>
<th>Lake Mead</th>
<th>Lake Mead Storage (maf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,700</td>
<td>Equalization Tier</td>
<td>24.3</td>
<td>1,220</td>
<td>Flood Control or 70R Surplus</td>
<td>25.9</td>
</tr>
<tr>
<td>3,636 - 3,666 (2008-2026)</td>
<td>Equalize, Avoid Spills or Release 8.23 maf</td>
<td>15.5 - 19.3 (2008-2026)</td>
<td>1,200</td>
<td>Domestic Surplus</td>
<td>22.9</td>
</tr>
<tr>
<td>3,595</td>
<td>Upper Elevation Balancing Tier<sup>1</sup></td>
<td>11.3</td>
<td>1,145</td>
<td>Normal Operations</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td>Release 8.23 maf; if Lake Mead < 1,075 feet, balance contents with a min/max release of 7.0 and 9.0 maf</td>
<td></td>
<td>1,125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,575</td>
<td>Mid-Elevation Release Tier</td>
<td>9.5</td>
<td>1,100</td>
<td></td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>Release 7.48 maf; if Lake Mead < 1,025 feet, release 8.23 maf</td>
<td></td>
<td>1,075</td>
<td>Shortage 333 kaf<sup>2</sup></td>
<td>9.4</td>
</tr>
<tr>
<td>3,560</td>
<td>Lower Elevation Balancing Tier</td>
<td>8.3</td>
<td>1,050</td>
<td>Shortage 417kaf<sup>2</sup></td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>Balance contents with a min/max release of 7.0 and 9.5 maf</td>
<td></td>
<td>1,025</td>
<td>Shortage 500 kaf<sup>2</sup> and Consultation<sup>3</sup></td>
<td>5.8</td>
</tr>
<tr>
<td>3,490</td>
<td></td>
<td>5.9</td>
<td>1,000</td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td>3,370</td>
<td></td>
<td>0</td>
<td>895</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

¹ Subject to April adjustments that may result in balancing releases or releases according to the Equalization Tier.

² These are amounts of shortage (i.e., reduced deliveries in the United States).

³ If Lake Mead falls below elevation 1,025 ft msl, the Department will initiate efforts to develop additional guidelines for shortages at lower Lake Mead elevations.
Decision-making Under Uncertainty
Interim Guidelines

• Multi-faceted research and development program begun in 2004
• Formation of work group of climate scientists to inform our EIS process – report published in EIS (Appendix U) and will be made available stand-alone
• Risk due to increasing climate variability analyzed in the EIS leading to this decision
Probability of Lower Basin Shortages
Comparison of Future Inflow Methodologies

Year

Probability of Occurrence

- - Direct Natural Flow Record (NA)
Direct Natural Flow Record (PA)
- - Nonparametric Paleo Conditioned (NA)
Nonparametric Paleo Conditioned (PA)
- - Direct Paleo (NA)
Direct Paleo (PA)
Major Conclusions from Colorado River Climate Technical Work Group

- Methodologies likely dependent upon time horizon of the decision
 - Climate variability potentially more important in the 10 to 20 year time frame than climate change
- For the 10 to 20 year time frame
 - “Condition” flows at Lee’s Ferry based on projections of climate indicators (i.e., AMO, PDO)
- For the 20+ year time frame
 - Model climate scenarios to generate temperature and precipitation on global scale
 - “Downscale” information to regional scale to drive runoff models
Decision-making Under Uncertainty
Next Steps

• Continued Research and Development

• The bottom line
 – Better quantification of uncertainties and improved understanding of risks
 – Better decision-making under uncertainty

Hoover Dam
C45-300-021094
Colorado River Management Under Uncertainty

For further information:
http://www.usbr.gov/lc/region