

Assessing Water Security at Global and Local Scales

Jacob Petersen-Perlman, Ph.D. Research Analyst, Water Resources Research Center The University of Arizona Tucson, Arizona USA jacobpp@email.arizona.edu

November 10, 2016

11 II. Jack Die im The Print

Water Situation in Jerash

- Receive water deliveries maybe once a week or once every two weeks
- 16% surface water, 84% groundwater
- Old infrastructure
- Big influx of refugee population, particularly from Syria

What is water security?

- Grey and Sadoff (2007): "The availability of an acceptable quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments and economies".
- "Water security is the capacity of a population to access sufficient water to meet all its needs and to limit the destructive aspects of water. It involves both the productivity and destructivity of water." – Michael Campana

Transboundary Waters

International River Basins

286 River Basins, 796 BCUs151 Countries2.8 Billion People

42% of the Earth's land

54% of global discharge

Source:

http://www.transboundarywaters.orst.edu/images/Images%20for%20image%20and%20map %20gallery/Global/Standard_world.jpg

United Nations . Educational, Scientific and . Cultural Organization

International Hydrological Programme

United Nations ٠ Educational, Scientific and + Oceanographic Cultural Organization - Commission

TWAP - River Basins Component

Global

- Not a detailed state-of-the environment assessment for each basin
- Based on data that is available for the vast majority of basins
- Need for global modelling

Comparative Assessment

Relative analysis based on relative risk
 to societies and ecosystems

Baseline & Future Trends

Relative Ris	k Category
1 Very low	
2 Low	
3 Moderate	
4 High	
5 Very high	

Upgrade of the transboundary river basins map

HydroBASINS/ HydroSHEDS + FAO GAUL dataset

Basin Country Unit - BCU

River Basin value = BCU values weighted by population and area

Water Quantity

- Environmental water stress
- Human water stress
- Agricultural water stress

Water Quality

- Nutrient pollution
- Wastewater pollution

Socioeconomics

- Economic dependence on water resources
- Societal well-being
- Exposure to floods and droughts

Ecosystems

- Wetland disconnectivity
- Ecosystem impacts from dams
- Threat to fish
- Extinction risk

Governance

- Legal framework
- Hydropolitical tension
- Enabling environment

Indicators enhancing and decreasing hydropolitical resilience

Basins At Risk - Working Hypothesis

(Wolf, Yoffe and Giordano, 2003)

"The likelihood of conflict rises as the rate of change within the basin exceeds the institutional capacity to absorb that change."

Sudden physical changes or lower institutional capacity are more conducive to disputes:
1) Uncoordinated development: a major project *in the absence* of a treaty or commission
2) "Internationalized basins"
3) General animosity

Ongoing or planned infrastructure projects

Sources: UN Framework Convention on Climate Change's Clean Development Mechanisms, International Rivers, the International Commission on Large Dams (ICOLD), websites of donors (Petersen-Perlman 2014)

Dams/diversions and downstream BCUs

BCU Dam Hazard Values

Dams exceeding 10 Megawatts in capacity and diversion projects diverting quantities greater than 100,000 m³/yr

Formal Transboundary Institutional Capacity

Resilience Value Treaty/RBO (Institutional Capacity)

onal Capacity)	At least one water treaty	0/1
	At least one treaty with an allocation mechanism	0/1
	At least one treaty with a flow variability management mechanism	0/1
	At least one treaty/RBO with a conflict resolution mechanism	0/1
(De Stefano et al., 2012)	At least one river basin organization	NONTEQ

Step 1 - Risk of Potential Hydropolitical Tensions

BCUs_BaselineIndicator_20140813

Resilience value (Treaty/RBO component)	Vulnerability to water availability changes
4, 5	1 (low V)
2, 3	2 (med V)
0, 1	3 (high V)

7	Large Dam Projects	Score ("hazard")
	No presence (in the BCU or upstream)	1 - LOW
	Presence (in the BCU or upstream)	3 - HIGH

Х

Step 1 - Risk of Potential Hydropolitical Tensions

Exacerbating Factors

Socio-political:

- Intra-state armed conflicts: Minorities at Risk (2009)
- Inter-state armed conflicts: UCDP/PRIO Armed Conflict Dataset (2013)
- Recent history of unfriendly relationships over water: OSU TFDD Water Events (2000-08)
- Low gross national income per capita: World Bank (2008-12)

Physical:

- High or increased climate-driven water variability: CV of annual runoff (present & projected)
- **Recent negative trends in water reserves**: GRACE satellite data (2003-2013)

Climate-driven Water Variability

Exacerbating Factors

Climate-driven Water Variability (Change in Coefficient of Variation)

Water variability	Score
CV: No change/ decrease	0
CV: High present/ increase	1

Gross National Income per capita

Exacerbating Factors

0

Gross National Income (GNI)

GNI per capita	Score
≥ 1035 \$	0
< 1035 \$	1

Concomitance of Exacerbating Factors

5

Concomitance of Exacerbating Factors

5

Copyright: ©2013 Esri, DeLorme, NAVTEQ

Step 2 - Risk of Potential Hydropolitical Tensions

BCUs_ProjectedIndicator_20140813

104 BCUs are in the high or very high relative risk categories

Step 2 - Risk of Potential Hydropolitical Tensions

The least at risk are N. America & Europe, except for southern Balkans

High concentration of new dams & limited formal transboundary cooperation

BCUs_ProjectedIndicator_20140813

104 BCUs are in the high or very high relative risk categories

Specific Basins at Risk

- Amazon (H)
- Artibonite (H)
- Benito/Ntem (VH) Lake Turkana
- Ca/Song-Koi (VH)
- Chiriqui (VH)
- Drin (VH)
- Essequibo (H)
- Grijalva (H)
- Bei Jiang/Hsi (VH)
- Irrawaddy (VH)
- Isonzo (H)
- Juba-Shibeli (H)
- Krka (VH) •

- Lake Chad (H)
- Lake Prespa (H)
 - (VH)
- Ma (VH)
- Mira (VH)
- Maritsa (H)
- Mono (VH)
 - Neretva (VH)
- Ob (H)
- Ogooue (VH)
- Orinoco (H)

- Red/Song Hong (VH)
- Sabi (VH)
- Saigon (VH)
- Salween (VH)
- Sanaga (VH)
- San Juan (VH)
- Struma (H)
- Thukela (VH)
- Tarim (VH) •
- Tumen (H)
- Vijose (H)
- Vardar (VH)

Remarks

- TWAP is a global snapshot, with advantages and limitations of any global, indicator-based study
- There is no single issue which is the most important, and there are no basins with either 'very low' or 'very high' risk for the full range of issues.
- Focus on planned or ongoing infrastructure projects: clear opportunities but also sources of tension
- Where formal arrangements already exist but there are still disputes, need to work on improving other issues
- Baseline to be kept up to date and expanded to include other relevant aspects (e.g. water quality)

Remarks

- In three "basin at risk" studies (Wolf et al. 2003; Bernauer and Bohmelt 2014; and ours), only one basin appears in all three (Ob)
 - Most likely due to different variables used to calculate risk
- Very uneven distribution of new water infrastructure

Steps in Local Water Security Assessment

- Defining the scale and scope (Activity 1, Step 1)
- Determine key water-related issues and values; Identify which components and indicators are important for substantive focus (Activity 1, Step 2)
- Identifying prior water-related studies and access to information (Activity 3, Step 6)
- Identifying data availability and accessibility; collecting information and data (Activity 3, Step 6)
- Indicator-based assessment (Activity 3, Step 6)

Indicator-based Assessment

		INDICATOR
		Availability
Reso	ource	Supply
		Demand
		Stress
Ecos	system Health	Quality
Five components	Five components	Fish
		Demand Fifteen Indicators
Infrastructure		Condition
		Treatment
Human Health		Access
		Reliability
		Impact
Capacity		Financial
		Education
		Training

	Availability	The amount of renewable freshwater that is available per person
	Supply	The vulnerability of the supply as caused by seasonal variations and/or depleting groundwater resources
	Demand	The level of demand for water use based on water licence allocations

Ecosystem Health	Stress	The amount of water that is removed from the ecosystem
	Quality	The Water Quality Index score for the protection of aquatic life
	Fish	Population trends for economically and culturally significant fish species

Infrastructure	Demand	How long before the capacity of water and wastewater services will be exceeded due to population growth
	Condition	The physical condition of water mains and sewers as reflected by system losses
	Treatment	The level of wastewater treatment

Human Health	Access	The amount of potable water that is accessible per person
	Reliability	The number of service disruption days per person
	Impact	The number of waterborne illness incidences

Capacities	Financial	The financial capacity of the community to manage water resources and respond to local challenges
	Education	The human capacity of the community to manage water resources and address local water issues
	Training	The level of training that water and wastewater operators have received

Example: Condition Indicator

 We use the following equation to calculate a score for the infrastructure condition indicator (*I_C*). A 25 percent system loss or greater receives a score of 0 and a 0 percent system loss receives a score of 100.

$$I_C = 100 - \left(\frac{L}{25} \times 100\right)$$

- Where: *L* = % system losses
- If $L \ge 25$, then $I_C = 0$
- If L = 0, then $I_C = 100$
- Determine system losses (*L*) for both water mains and sewers; the system with the highest loss percentage is used to calculate $I_{C.}$

Example: Condition Indicator

• EXAMPLE: If the water main system loss percentage is 15%, then I_C is:

•
$$I_C = 100 - \left(\frac{15}{25} \times 100\right) = 40.$$

 If the sewer system loss percentage is 10%, then I_C is:

•
$$I_C = 100 - \left(\frac{10}{25} \times 100\right) = 60.$$

• We use the system with the highest loss percentage, so the score is 40.

LOCAL WATER SECURITY ASSESSMENT SCORES

Preliminary Results

• JORDAN:

- Water availability; infrastructure a constant issue
- Generally good water quality; strong human health indicators
- Infrastructure could use expansion and repair
- TUNISIA:
 - High water variability
 - Generally good water quality; strong human health indicators
 - Infrastructure could use expansion and repair

Results for Jerash

Jerash's proposed actions

- Replace and modernize small diameter water mains of 10% of existing water network
- Improve water efficiency use in households by 25%
- Promote water harvesting systems for 25% of population
- Water quality monitoring plan
- Increase population using sewerage network by 30%

Strengths of this approach

- Small scale
- Local capacity building
- Attempt at holistic approach of capturing water security
- Easy-to-understand scores

Weaknesses of this approach

- Some metrics don't apply
- Scores only go so far don't explain everything
- Non-comprehensive

Water Security at Global vs. Local Scales

• Problem of scale

- Perception of higher resilience at global scale, but smaller scale evidence may be contradictory
- Scoring by BCU treats each BCU as a "closed system"; but boundaries are permeable
- Impossible to incorporate all factors at any scale
- Global indicators may point towards basins and BCUs of low water security, but on-the-ground research is needed

Acknowledgements

Work drawn from the following publications:

De Stefano, Lucia, Jacob D. Petersen-Perlman, Eric Sproles, Jim Eynard, & Aaron T. Wolf. "Global Assessment of Transboundary Rivers Basins for Potential Hydro-political Tensions." *Under review; Global Environmental Change.*

R. Lausevic, S. Milutinovic, J. Petersen-Perlman, M. Reed, A. Graves, M. Bartula, S. Susic, & A. Popovic. 2016. *Local Water Security Action Planning Manual.* Regional Environmental Center, Szentendre, Hungary. ISBN 978-963-9638-69-3.

Lucia de Stefano Water Resources Research Center

References

- Bernauer, Thomas, and Tobias Böhmelt. (2014). "Basins at risk: predicting international river basin conflict and cooperation." Global Environmental Politics.
- De Stefano, L., Duncan, J., Dinar, S., Stahl, K., Strzepek, K. M., & Wolf, A. T. (2012). Climate change and the institutional resilience of international river basins. *Journal of Peace Research*, 49(1), 193-209.
- Grey, D., and C. W. Sadoff. 2007. Sink or swim? Water security for growth and development. Water Policy 9:545–571.
- "Defining Water Security." <u>https://watersecurity.wordpress.com/2011/12/17/defining-water-security/</u>
- Petersen-Perlman, J. D. (2016). Projecting River Basin Resilience in the Zambezi River Basin through Global Analyses and Basin Realities. Water Resources Management, 30(6), 1987-2003.
- Wolf, A. T., Yoffe, S. B., & Giordano, M. (2003). International waters: identifying basins at risk. *Water Policy*, *5*(1), 29-60.

Thank you! Questions?