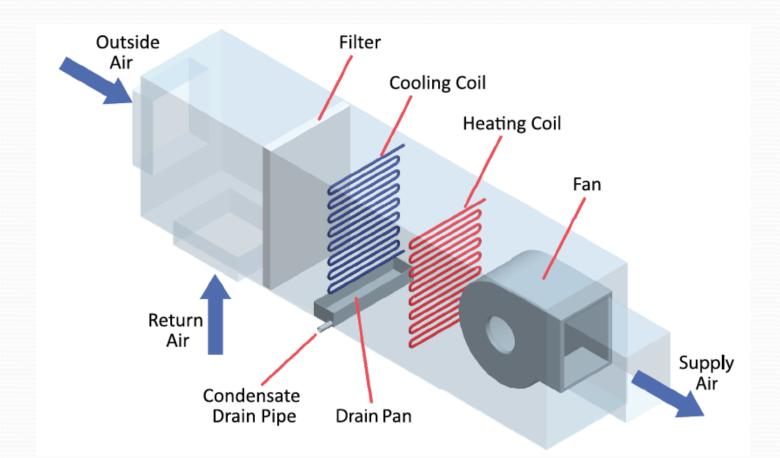

Condensate Collection in Arizona?

University of Arizona, Tucson, AZ November 12, 2014

Dr. Diana D. Glawe Engineering Science Department Trinity University, San Antonio, TX



Condensate

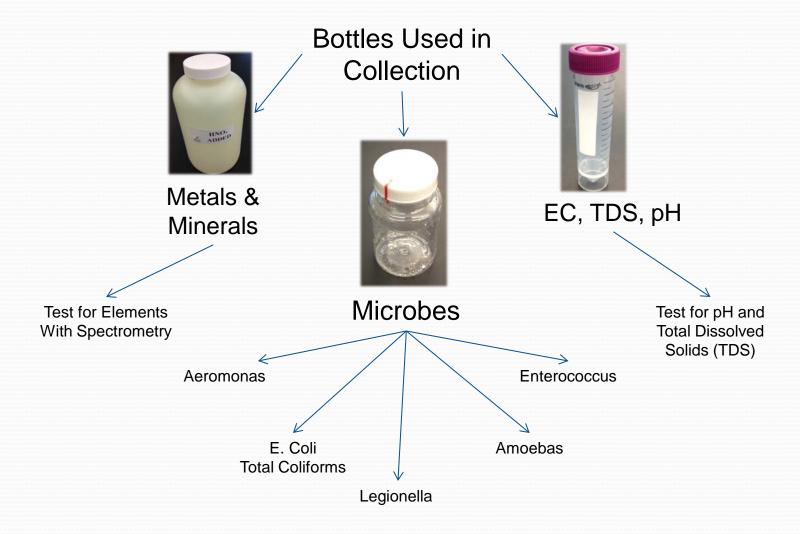
Water that collects on a cool surface because the temperature of the surface is below the point at which moisture in the air forms liquid droplets (i.e. dew point)

Air Handling Unit (AHU)

(Source: San Antonio Condensate Collection and Use Manual for Commercial Buildings 2013)

Water Quality

iment ow/ dium ligh ow	Total Dissolved Solids (TDS) Low Depends	Hardness Low Low	Organic Biological Oxygen Demand (BOD) Low	Pathogens (A) Low Medium	Other Considerations None Pesticides and	
dium ligh						
-	Depends	Low	Medium	Medium	Pesticides and	
.ow				Medium	Pesticides and fertilizers	
	Low	Low	Low	Medium	May contain copper when coil cleaned	
dium	High	High	Medium	Medium	Cooling tower treatment chemicals	
ow	High	High	Low	Low	High salt content	
ligh	Medium	Medium	High	High	Detergents and bleach	
ow	Depends	Depends	Medium	Medium	Similar to stormwater	
	ow igh ow ing water i se of its m	ow High igh Medium ow Depends ing water is also a possible se of its major water-wast n; may need additional tree	ow High High igh Medium Medium ow Depends Depends ing water is also a possible source of clean se of its major water-wasting potential. Fo	ow High High Low igh Medium Medium High ow Depends Depends Medium ing water is also a possible source of clean onsite water, but facilities of its major water-wasting potential. For that reason, it is not in n; may need additional treatment depending on end use	ow High High Low Low igh Medium Medium High High ow Depends Depends Medium Medium ing water is also a possible source of clean onsite water, but facility managers shout se of its major water-wasting potential. For that reason, it is not included in the list n; may need additional treatment depending on end use	


Depends: Dependent upon local conditions

(A): Disinfection for pathogens is recommended for all water used indoors for toilet flushing or other uses

Table 8-1. Water Quality Considerations for Onsite Alternative Water Sources*

(Source: EPA WaterSense at Work. EPA 832-F-12-034)

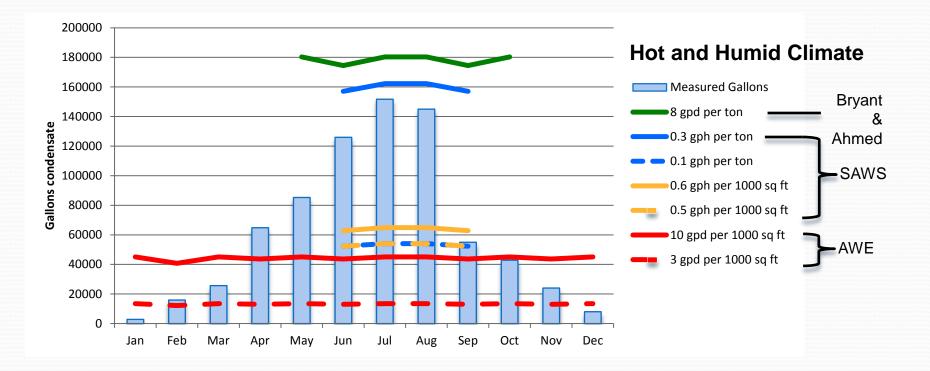
Quality Research: Water Sampling Kit

Reasons to Collect Condensate

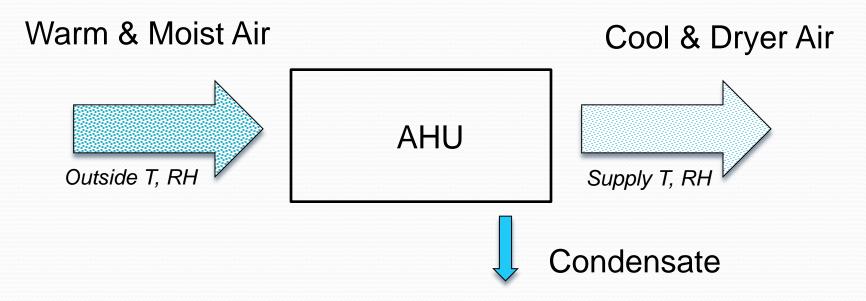
- Economic benefit for building owner
- Bypass drought restrictions (in some jurisdictions)
- Reduce burden on central water utility systems
- Water savings, energy savings, CO₂ savings

Is it worth collecting in Arizona?

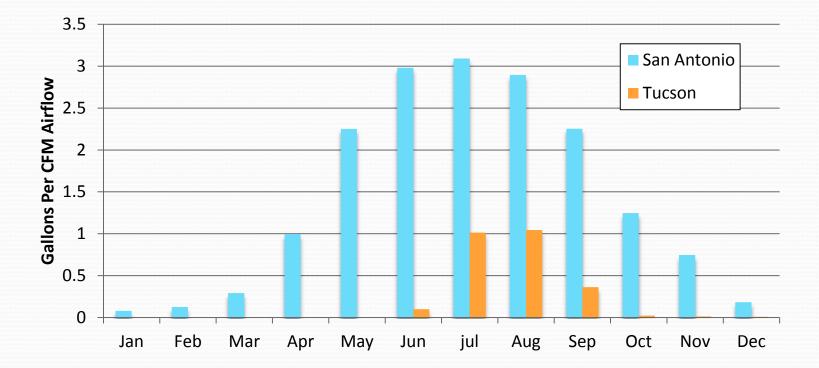
- Condensate quality is good
- Quantity depends on climate and facility
- Cost depends on application and facility
- Economic payback depends on projected water prices
- Other benefits may be considered in decision


Let's go through the steps of making a decision

Key Factor is How Much Condensate?


How Much Condensate? (Rule of Thumb)

San Antonio Example: 154,440 sq ft (727 ton) applied engineering and technology building measured condensate (747,290 gallons/yr) with predictions

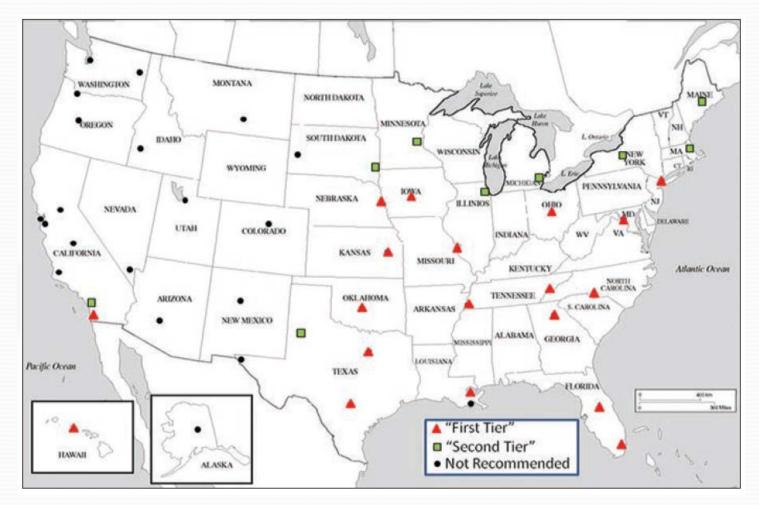

(Source: San Antonio Condensate Collection and Use Manual for Commercial Buildings. 2013)

Thermodynamic Model

- Thermodynamic equations of state
- Conservation of mass for both water and air
- Calculate condensate gallons per cubic foot of air passing through AHU per minute (g/cfm)

San Antonio vs. Tucson Potential

 San Antonio condensate potential 7 times more than Tucson for 100% outside air


(Data Source for Calculations: DOE/NREL Typical Meteorological Year (TMY3) database)

ntial	
ote	A
Ite P	e US
nsa	s the
nde	ros
S	Ac

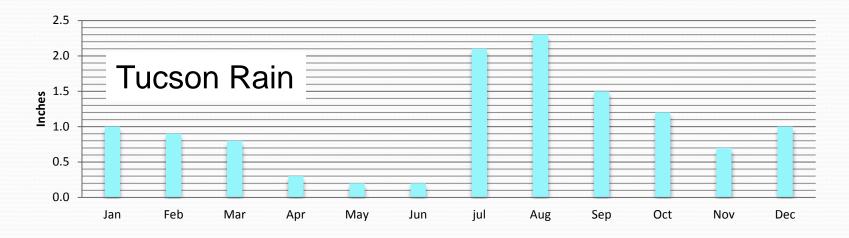
-	Weather Data Predicted	Regression Equation Predicted	Cost of Water (\$/1,000 gal)	Simple Payback Period (Years)	Location	Weather Data Predicted gal/cfm OA	Regression Equation Predicted gal/cfm OA	Cost of Water (\$/1,000 gal)	Simple Payback Period (Years)
	gal/cfm OA	gal/cfm OA							
Albuquerque,		\$6.51	70	New Orleans	24.0	24.0	\$7.35	1.9	
NM	0.7			10	New York, NY	8.4	9.0	\$9.04	4.4
Athens, GA	13.3	13.9	\$7.57	3.3	Oklahoma City,	10.3	12.2	\$5.50	5.8
Bangor, ME	3.3	3.3	\$9.36	10.8	OK				
Billings, MT	0.2	*	\$4.05	355	Omaha, NE	9.5	7.9	\$2.27	15.4
Boston, MA	0.06	5.1	\$3.85	4.5	Orlando, FL	26.4	26.2	\$4.82	2.6
Burbank, CA	5.1	4.6	\$14.21	5.0	Phoenix, AZ	2.7	7.3	\$6.77	18.0
Charlotte, NC	4.7	12.4	\$13.86	3.4	Portland, OR	1.8	4.1	\$5.05	35.9
Chicago, IL	11.4	6.1	\$8.49	14.2	Rapid City, SD	1.6	*	\$7.01	30.4
Columbus, OH	6.2	5.5	\$3.73	6.8	Redmond, OR Sacramento, CA	0.7	*	\$6.37 \$11.47	72.0
Dallas, TX	6.5	16.5	\$7.43	4.0	Sacramento, OA	1.0		φ11.47	10.0
Denver, CO	16.0	*	\$5.24	139	Salt Lake City	0.2	*	\$6.21	333
Des Moines, IA	0.6	6.5	\$4.26	5.7	San Antonio San Diego, CA	19.0 7.3	17.1 4.9	\$3.63	4.8
Detroit, MI	5.7	4.9	\$6.41	9.0					
El Paso, TX	2.7	1.9	\$6.25	19.7	San Francisco	1.2	1.7	\$12.10	22.2
Fairbanks, AK	0.2	*	\$14.71	98	San Jose, CA	1.8	2.5	\$10.84	16.8
Fresno, CA	1.7	4.6	\$3.31	60	San Luis Obispo, CA	1.3	1.6	\$17.49	14.5
Honolulu, HI	25.7	20.2	\$6.01	2.1	Seattle, WA	0.8		\$17.35	25.4
Knoxville, TN	10.9	11.2	\$5.71	5.3	Sioux Falls, SD	4.8	2.4	\$0.11	8.5
Las Vegas, NV	0.6	*	\$3.31	182	Spokane, WA	4.8 0.04	*	\$8.11 \$7.42	8.5
Lubbock, TX	5.0	5.9	\$6.34	10.5	St Louis, MO	8.0	9.5	\$4.68	8.8
Memphis, TN	13.3	15.1	\$2.66	9.3	Syracuse, NY	6.5	6.4	\$5.15	9.9
Miami, FL	31.4	31.9	\$10.75	1.0	Topeka , KS	11.2	10.9	\$6.27	4.7
Minneapolis, MN	4.6	2.4	\$8.00	8.9	Washington, DC	9.8	10.0	\$9.21	3.7

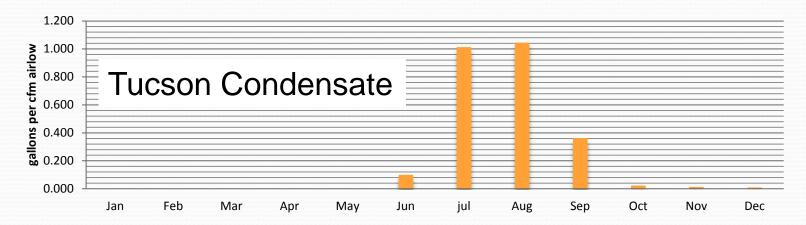
(Source: Lawrence, Thomas, Jason Perry, and Tyler Alsen. "AHU Condensate Collection Economics." ASHRAE Journal, May 2012)

Simple Economic Analysis

(Source: Lawrence, Thomas, Jason Perry, and Tyler Alsen. "AHU Condensate Collection Economics." ASHRAE Journal, May 2012)

Estimating System Cost


- Expect only inexpensive systems to be viable in Tucson
 - Cooling tower make-up water
 - Adding to existing (rain) water storage tank
- Condensate only produced Jun-Sep in Tucson
 - Condensate as supplemental water makes most sense

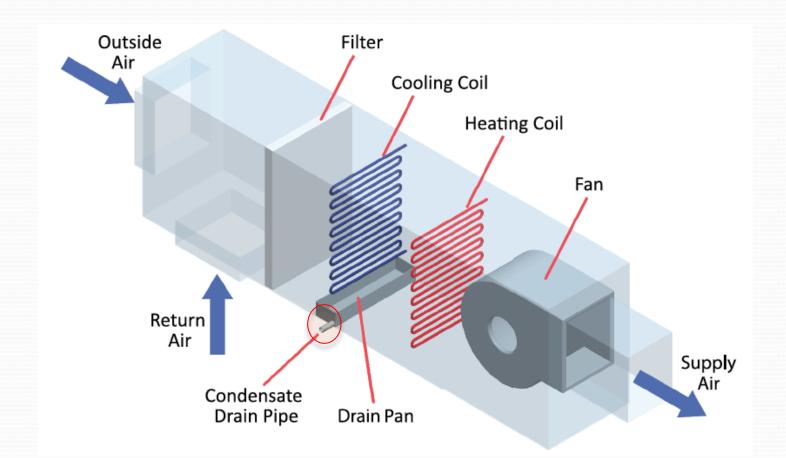

Best Application of Condensate

- Cooling tower make-up water is BEST application
 - Low initial cost
 - Easy implementation
 - Cool and pure water a plus
 - Low maintenance

San Antonio Example: Building producing 224,511 gallons per year. Cost to install retrofit system for cooling tower makeup water was \$2,272 materials (pipes and pumps) plus \$750 labor. SAWS rebate 50%. Incremental investment \$1,511. Payback period 16 months. No water treatment beyond that already existing for cooling tower water. No overflow and no storage requirements. Maintain air seal and pump (if applicable). (Arizona longer payback period ~ 5 yrs)

Or Add to Other Alternative Water

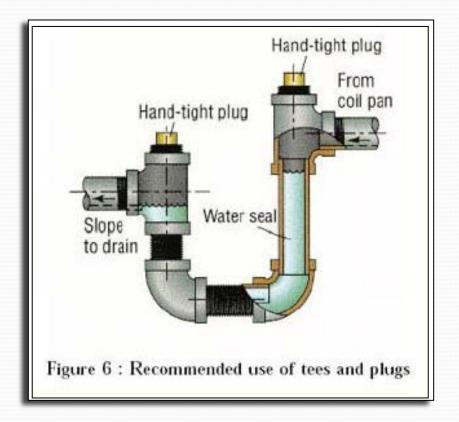
(Data Source for Calculations: DOE/NREL Typical Meteorological Year (TMY3) database)


Reasonable Applications Elsewhere

- Cooling tower
- Irrigation
- Fountains, water features (bypass drought restrictions)
- Car washing (low TDS)
- Toilet flushing
- Process water
- Others

Condensate Success

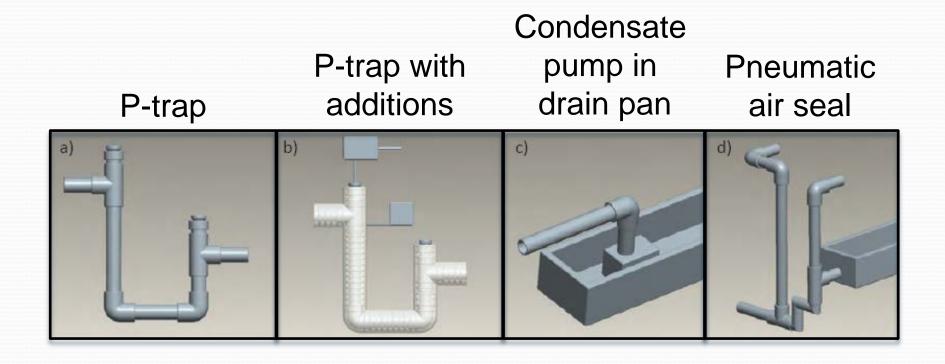
- Initial investment/payback period
- Achieve an effective design and installation
- Operate and maintain


Effective Design – Drain Line Air Seal

(Source: San Antonio Condensate Collection and Use Manual for Commercial Buildings. Pending publication)

Air Seals : Standard P-trap

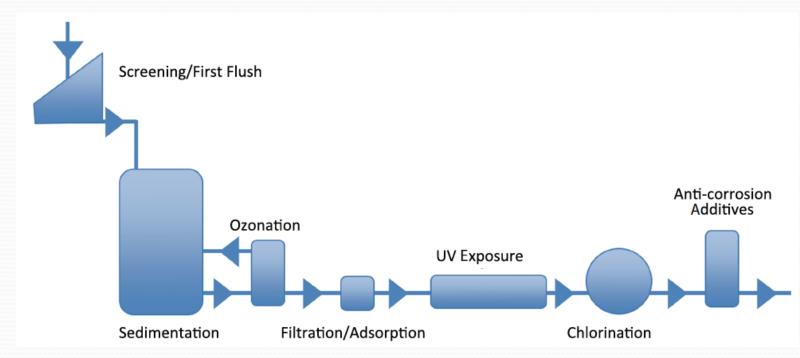
- Isolates air handling unit
- Minimizes pipe wet time
- Maintenance access point
- Dry trap is most likely cause of failure in dry climates



(Source: Brusha, Ronald F. "Condensate Traps for Cooling Coils." HPAC Engineering, Oct 2001)

Effective Design – Drain Line Air Seal

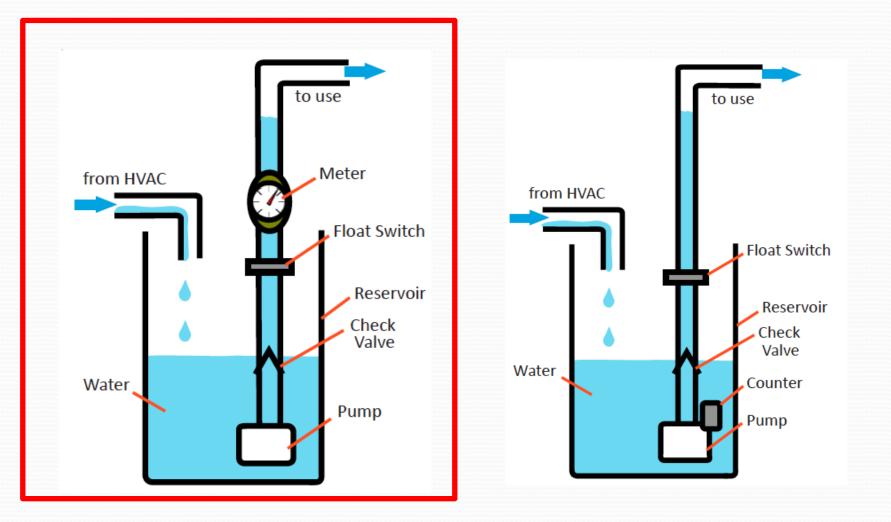
- Functioning air seal supports proper condensate drainage
- Consequence of improper condensate drainage
 - Overflow of drain pan
 - Overspray into fan and ductwork
 - Ingestion of toxic fumes through drain line (draw through)
 - Energy loss with exit of conditioned air through drain line (blow through)
 - Stagnant water in drain pan
- Air Quality Connection
 - Legionella bacterium
 - Sick building syndrome


Alternatives to Standard P-trap

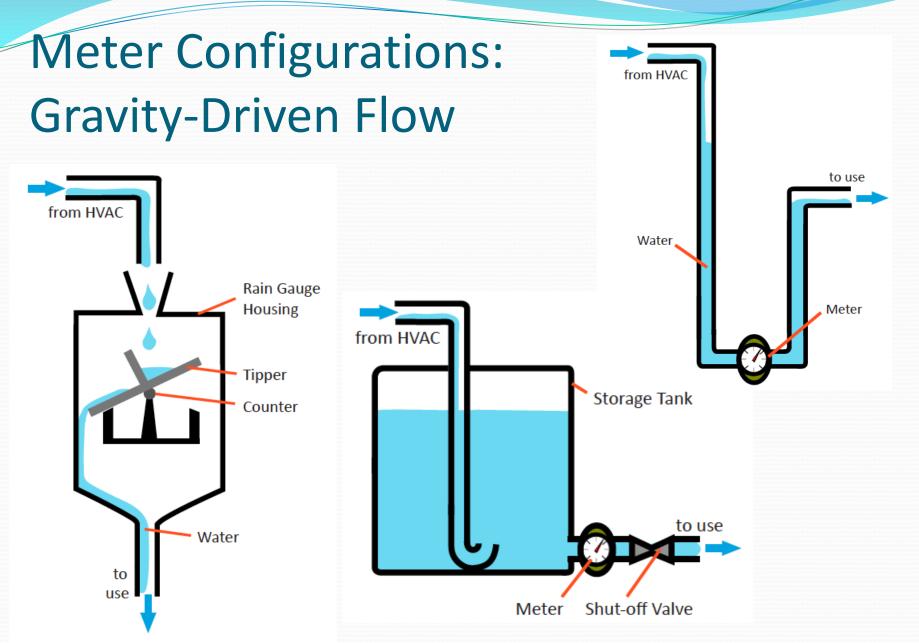
(Source: San Antonio Condensate Collection and Use Manual for Commercial Buildings. 2013)

Effective Design – Treatment Train

- Depends on reclaimed water source(s)
- Depends on application : "fit for purpose"

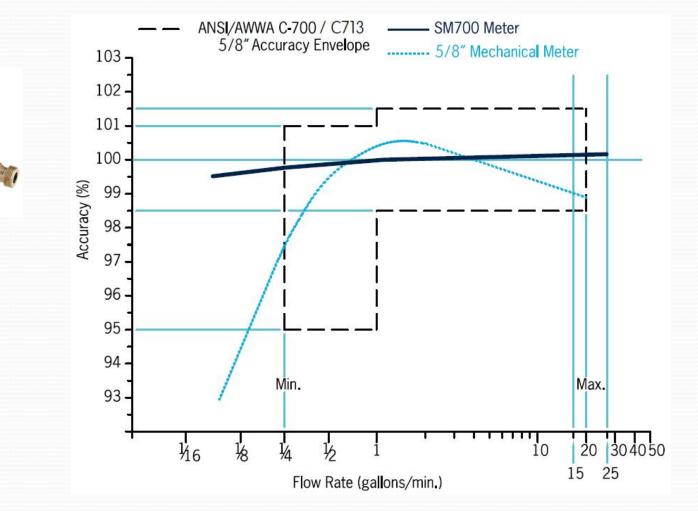


(Source: Adapted from Mechell et. al, Rainwater Harvesting: System Planning. 2010)


Effective Design – Automated Monitoring

- Drip pan overflow alarm
- Condensate meter data collection
- Water quality sensors in treatment train
- Make it difficult for system failures to go unnoticed

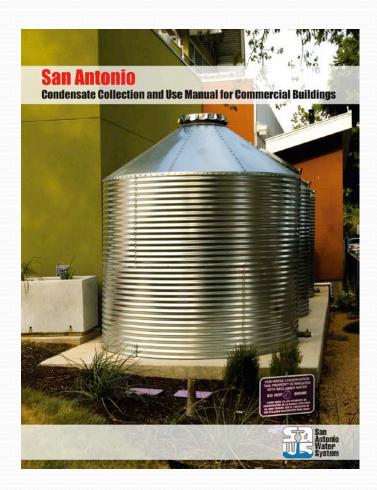
Meter Configuration: Pump-Driven Flow



(Source: San Antonio Condensate Collection and Use Manual for Commercial Buildings 2013)

(Source: San Antonio Condensate Collection and Use Manual for Commercial Buildings 2013)

Positive Displacement Meter


(Source: www.elstermetering.com)

Operation and Maintenance -Scheduled Maintenance Program

- Start with commissioning during installation!
- AHU: air filter, cooling coils, drain pan
- Drain seal
- Piping, pumps, and valves
- Storage Tank: overflow and makeup water control
- Backflow valve inspection
- Water treatment filters, lamps, etc.
- Water quality tests

San Antonio Condensate User Manual

- In collaboration with San Antonio Water System (SAWS)
- Design through maintenance
- Public access on SAWS website www.SAWS.org
- Resources in appendices
- 110 pages

Codes and Standards

- Condensate is governed by local jurisdictions, not Federal
- Code and Standards Resources/References
 - International Green Construction Code
 - Green Plumbing and Mechanical Code Supplement
 - NSF/ANSI Standards 350 & 350.1
 - ASHRAE 189.1

Questions

Dr. Diana D. Glawe Associate Professor Engineering Science Department Trinity University San Antonio, TX 78212

dglawe@trinity.edu

210-999-7515

