

Agricultural Managed Aquifer Recharge (Ag-MAR) – A Method for Sustainable Groundwater Management

Helen E. Dahlke, Elad Levintal, Nick Murphy, Yonatan Ganot, Cristina Prieto Garcia University of California, Davis - hdahlke@ucdavis.edu

Groundwater Depletion 1900-2008

Groundwater overdraft – recent trends

Central Valley overdraft rates:

1961–2021: 1.51 MAF/yr 2003–2021: 1.95 MAF/yr 2019–2021: 6.95 MAF/yr

Liu et al., 2022, Nature Communications

Data as of May 16, 2023

% of April 1 Average / % of Normal for This Date

How to address 2-3 million acre-feet per year of groundwater overdraft in the Central Valley?

Current plans to address groundwater overdraft

PPIC, 2020, A Review of San Joaquin Valley Groundwater Sustainability Plans

Capture high-magnitude flows

Photo credit: Sustainable Conservation

High-magnitude flows

High-magnitude flows

- HMF availability is 4.5 out of 10 years in San Joaquin Valley and 7/10 in Sacramento Valley.
 - On average we see 20-40 days with HMF in San Joaquin Valley and 30-50 days of HMF in Sacramento Valley.

Wet years provide 50% to 125+% more flow than average years. To capture infrequent HMF, we need large recharge areas...

How do we capture large amounts of water in a short time?

UNMANAGED RECHARGE

MANAGED RECHARGE

California Flood-MAR program

Home | Waterrights | Water Issues | Programs | Applications | Groundwater Recharge | Streamlined Permits

Streamlined Processing for Standard Groundwater Recharge Water Rights

QUICK LINKS

- Home
- Application Types
- FAQs
- Fact Sheets
- Groundwater Recharge
 - Applications
- SGMA Home

The state legislature enacted the Sustainable Groundwater management Act (SGMA) to address widespread overdraft and other undesirable results caused by groundwater conditions in California's groundwater basins. SGMA requires local agencies in high and medium priority basins to develop plans that achieve sustainability in the basin within 20 years of implementation. Groundwater recharge is likely to be an important part of achieving sustainability in groundwater basins, but local agencies may lack the water rights to divert and use that water later. The streamlined permitting process for diversion of high flows to underground storage was developed, in part, to assist local agencies to obtain necessary water rights. Those water rights will, in turn, help Groundwater Sustainability Agencies (GSAs) reach their sustainability goals more quickly.

California Flood-MAR program

Ag-MAR is flood-managed recharge that uses agricultural working lands as spreading grounds

Don Cameron, General Manager, Terranova Ranch

Bio-physical factors

- Crop tolerance
- Soil suitability
- Water availability
- Hydrogeology
- Conveyance capacity
- Water quality

Institutional factors

- Cost & incentives
- Water rights
- Permits
- Shared governance
- Ecosystem services and benefits

Don Cameron, General Manager, Terranova Ranch

Treatments & Applied Water (2019 & 2020)

^{*}Roundup and Poast (2.25 pt/ac) with a COC or MSO in mix

Date

Date

Yield

- Alfalfa in flood treatment could not be cut during 1st cutting → double yield during 2nd cutting
- 3rd and 4th cutting no statistical difference in yield

Forage Quality

Flooding did impact digestible fiber content

aNDF = total insoluble fiber in feeds ADF = least digestible fiber, subset of aNDF Ash = total mineral content

CP = nitrogen content of alfalfa amino acids

	Treatment	Amylase-treated neutral detergent fiber (aNDF)		Acid Detergent Fiber (ADF)		Ash		Crude Protein (CP)	
Commercial									
control	4	41 Fair	b	33.76 <mark>Fair</mark>	b	11.02 High	b	21.07 Premium	а
Irrigation control	1	42.2 Fair	b	35.02 <mark>Fair</mark>	b	13.22 High	а	22.22 Supreme	а
4 on 10 off	2	47.11 Utility	а	39.35 Utility	а	13.61 High	а	19.01 <mark>Good</mark>	b
3 on 4 off	3	48.28 Utility	а	40.03 Utility	а	13.29 High	а	18.11 <mark>Good</mark>	b
		p< 0.001		p< 0.001		p< 0.001		p< 0.001	

	ADF	NDF	RFV	TDN-100%	TDN-90%	CP-100%
Supreme	<27	<34	>185	>62	>55.9	>22
Premium	27-29	34-36	170-185	60.5-62	54.5-55.9	20-22
Good	29-32	36-40	150-170	58-60	52.5-54.5	18-20
Fair	32-35	40-44	130-150	56-58	50.5-52.5	16-18
Utility	>35	>44	<130	<56	<50.5	<16

ADF = Acid Detergent Fiber; NDF = Neutral Detergent Fiber; RFV = Relative Feed Value; TDN = Total Digestible nutrients. RFV calculated using the Wis/Minn formula. TDN calculated using the western formula. Values based on 100% dry matter, TDN both 90% and 100%.

WATER QUALITY

Risk of groundwater contamination

Nitrate in shallow groundwater ENTERPRISE Legend MILLVILLE ANDERSON -Central Valley Water Board ROSEWOOD -SOUTH BATTLE CREEK DWR Hydrologic Regions BEND BOWMAN -ANTELOPE Groundwater Basin Boundary DYE CREEK RED BLUFF LOS MOLINOS Upper Zone Ambient CORNING Nitrate as N < 2.5 mg/L WEST BUTTE 2.6 - 5.0 mg/L EAST BUTTE 5.1 - 7.5 mg/L NORTH YUBA 7.6 - 10.0 mg/L COLUS SOUTH YUBA > 10.0 mg/L SUTTER CAPAY VALLEY NORTH AMERICAN SOUTH AMERICAN SOLAN OSUMNES SUISUN FAIRFIELD PITTSBURG PLAIN EASTERN SAN JOAQUIN MODESTO URLOCK MERCED CHOWCHILLA DELTA-MENDOTA-MADERA KAWEAH PLEASANT VALLEY TULE TULARE LAK KERN COUNTY (POSO) KERN COUNTY KERN COUNTY (KERN RIVER) 100

https://suscon.org/wp-content/uploads/2021/06/Protecting-Groundwater-Quality-While-Replenishing-Aquifers.pdf

Source: CV-Salts Coalition

control vs. flooded

Kearney Research and Extension Center Thompson seedless grapes (*Vitis vinifera*) flooded 2 and 4 weeks in Feb 2020, 2021

Site-specific nitrogen management

Site-specific nitrogen management

water

Murphy et al. 2021, VZJ; Levintal et al. 2022, Crit. Rev ES&T

Nitrogen cycling processes

- Soil microbial communities
- Proteobacteria
- Firmicutes
- Planctomycetota
- Crenarchaeota
- Actinobacteriota
- Chloroflexi
- Verrucomicrobiota
- Nitrospirota
- Acidobacteriota
- Bacteroidota
- Methylomirabilota
- Desulfobacterota

Murphy et al. 2021, VZJ; Levintal et al. 2022, Crit. Rev ES&T

Huang et al., ISMEJ, in review.

Reactive nitrate leaching transport modeling

- Conditional kinetic HP1-MIM (HYDRUS-1D & PHREEQC Model)
- Dual-porosity, mobile-immobile zone reactive nitrate transport model

Simulated Nitrogen Transformation processes

- (1) Leaching
- (2) Mobile Nitrification (1st order)
- (3) Mobile Mineralization (1st order)
- (4) Immobile Nitrification
- (5) Immobile Mineralization
- (6) Denitrification
- (7) Mass transfer (mobile- immobile phase)

Reactive nitrate leaching transport modeling

HYDRUS-1D calculates

Water Flow
(Richard's Eq.) $\frac{\partial \theta(h)}{\partial t} = \frac{\partial}{\partial x} \left[K(h) \left(\frac{\partial h}{\partial x} + \cos \alpha \right) \right] - S(h)$ Solute Transport
(ADE + Sinks +
Biogeochemical
Reactions) $\frac{\partial \theta c_i}{\partial t} = \frac{\partial}{\partial x} \left(\theta D_i^w \frac{\partial c_i}{\partial x} \right) - \frac{\partial q c_i}{\partial x} - S c_{r,i} \left(+ R_i \right)$

PHREEQC calculates

- Denitrification (zero-order kinetic reaction; rates estimated from lab incubation data, conditional on %PSF)
- Nitrification (first-order kinetic reaction; rates assumed to be non-limiting, conditional on %PSF)
- Mineralization (first-order kinetic reaction; rates estimated from lab incubation data, conditional on water content and temperature)
- Adsorption of org-N, org-C, ammonium (Freundlich Isotherm, parameters from literature)

Role of flooding magnitude and frequency on nitrate leaching

! Absolute values are influenced by initial soil nitrate concentrations...

Murphy et al. In Prep.

Effect of Ag-MAR on groundwater nitrate?

Nitrate leaching risk

Soil surface

8 in	0.2 m	Flooding
2 ft	0.6 m	 4-weeks 3 plots, 7785 sqft each 10m average recharge
3.3 ft	1 m	Sensors
9.8 ft	3 m	 Soil moisture, EC, temperature O₂ (gaseous) Redox potential Ponding depth Water level
16 ft	5 m	Sampling Soil samples Soil pore water Groundwater

Almond orchard - Modesto

Groundwater table at 21 ft

Breakthrough of vadose zone contaminants

Time

Subsurface heterogeneity

OaA MW6 Modesto-clay loam MW7 MmA MW8 **Dinuba fine** sandy loam Oakdale sandy loam

MW6 (Profile 1), MW7 (Profile 2), MW8 (Profile 3)

Depth (cm)	MW6	MW7	MW8
0-33	SC	SC	SC
33-66	SC	SC	SCL
66-100	SCL	SCL	SCL
100-133	SC	SCL	SCL
133-166	SCL	SiL	SCL
166-200	SCL	SiL	SCL
200-266	SCL	SC	FS
266-333	FS	FS	S
333-400	SCL	SCL	S
400-466	FS	FS	S
466-533	S	S	FS
533-600	S	S	FS
600-666	SCL	SCL	S
666-733	FS	S	SCL

SC: silty clay, SCL: silty clay loam, SiL: Silt loam, FS: fine sand, S: sand

Impact of subsurface heterogeneity on recharge

Indicators	MW6	MW7	MW8	Mean	Variation percentage
Recharge efficiency (-)	87.8%	88.8%	89.80%	88.8%	-2.3%
Flow velocity (cm/day)	144.29	90.13	163.81	135	81.7%
Travel time of recharge (days)	3.47	4.99	2.63	3.69	32.3%
Oxidation-reduction potential (Eh)	-331.9	-200.7	-296.1	-276.2	65.30%

Nitrate leaching to groundwater

Data from Thomas Harter & Spencer Jordan

Mobilization of geogenic contaminants

DECISION SUPPORT TOO

How to site the best Ag-MAR locations?

Decision support

Soil agricultural groundwater banking index (SAGBI)

O'Geen et al. 2015, CalAg

https://casoilresource.lawr.ucdavis.edu/sagbi/

Soil-crop relationships

Сгор	SAGBI rating	Soil texture	Infiltration rate (in/hr)	Water applied (ft)	Deep percolation (%)	Yield - compared to control (%)
Almond	Excellent	Dune land	13	2.1	99	125
Alfalfa	Good	Stoner gravelly coarse loam	3.9	28	99	90
Almond	Moderately good	Dinuba fine sandy loam	2.7	2	87	99
Tomato	Moderately poor	Traver fine sandy loam	0.24	1.95	85	125
Almond	Moderately poor	Tehama silt loam*	0.25	0.4	77	-
Grape	Poor	Hanford sandy loam*	0.32	6.7	98	88
Grape	Poor	Hanford fine sandy loam*	0.16	5.8	95	60

* Soil with hardpan

Soil trafficability after deep wetting

Trafficability and risk of soil compaction

Soil trafficability after deep wetting

Time-to-trafficability after deep soil wetting

D -			
Ба	CK	aro	linc

ABOUT

The time-to-trafficability SoilWeb product is intended to help California growers identify when fields are generally trafficable after deep soil wetting during crop dormancy or winter fallow periods. The tool applies to wetting situations such as managed aquifer recharge projects and large rain or flood events. The primary objective of the app is to help growers avoid physical soil damage by agricultural vehicles, so estimates are relatively conservative.

See the topics below to better understand this SoilWeb product.

Use the "Soil Trafficability" tab to modify the trafficability estimate and map settings.

- ▼ Definitions
- ▼ How to Interpret
- ▼ Assumptions
- ▼ Feedback

https://soilmap2-1.lawr.ucdavis.edu/ soil-trafficability/

Safe water application calculator

Ganot & Dahlke, 2021 AgWaterMgt

Safe Water Application Calculator

Crop: Almond Specify: Rootstock: Plum; peach x plum hybrid - Dormancy

Select rootstock.

Choose growth if crop is in bloom or leaved out. Choose dormancy if crop is dormant.

\$

Rooting Depth: 30 - in Units: Olnches Centimeters

Enter rooting depth. Typical rooting depth for Almond: 12 in

Soil Texture:

• Select OLook up by location

SELECT TEXTURE: Sandy loam

Initial Soil Water Content: 22 $\ensuremath{\hat{\circ}}\xspace\%$

Enter the volume of water per volume of soil, expressed as a percentage. Field capacity for sandy loam: **22%**

Model Output:

Time of water application: 1.08 days

Future of Managed Aquifer Recharge in the U.S.

https://www.nationalacademies.org/event/05-10-2022/future-of-managed-aquifer-recharge-in-the-us

Join the Flood-MAR network

https://floodmar.org

Why should I consider Ag-MAR

- Increased groundwater storage for next drought
- Fill up soil profile prior to growing season
- Frequency of wet years is decreasing in southwestern US
- Additional moisture stimulate mineralization (natural production of nitrate in soils)
- Recharge with low nitrogen source water does dilute elevated groundwater nitrate concentrations
- Management of soil salinity

Many **THANKS** to my students, postdocs and collaborators!

Don Cameron, Nick Blom, Cristina Prieto Garcia, Elad Levintal, Yonatan Ganot, Nick Murphy, Shulamit Shroder, Yara Pasner, Matt Fidelibus, Nick Clark, Astrid Volder, Roger Duncan

Thank you!

References

- UCDAVIS DEPARTMENT OF LAND, AIR AND WATER RESOURCES
- Levintal, E., Kniffin, M.L., Ganot, Y., Marwaha, N., Murphy, N.P., and H.E. Dahlke. 2022. Agricultural managed aquifer recharge (Ag-MAR) a method for sustainable groundwater management: A review. Critical Reviews in Environmental Science and Technology. <u>https://doi.org/10.1080/10643389.2022.2050160</u>
- Marwaha, N., Kourakos, G., Levintal, E., and Dahlke, H.E. 2021. Identifying agricultural managed aquifer recharge locations to benefit drinking water supply in rural communities. Water Resources Research, <u>https://doi.org/10.1029/2020WR028811</u>
- Ganot, Y. and H.E. Dahlke. 2021. A model for estimating Ag-MAR flooding duration based on crop tolerance, root depth, and soil texture data. Agricultural Water Management, <u>https://doi.org/10.1016/j.agwat.2021.107031</u>.
- Ganot, Y. and H.E. Dahlke. 2021. Natural and Forced Soil Aeration during Agricultural Managed Aquifer Recharge (Ag-MAR). Vadose Zone Journal, <u>https://doi.org/10.1002/vzj2.20128</u>.
- Kourakos, G., Dahlke, H.E., Harter, T. 2019. Increasing Groundwater Availability and Baseflow through Agricultural Managed Aquifer Recharge in an Irrigated Basin. Water Resources Research, <u>https://doi.org/10.1029/2018WR024019</u>
- Murphy, N.P., H. Waterhouse, and H.E. Dahlke. 2021. Influence of Agricultural Managed Aquifer Recharge on nitrate transport – the role of soil type and flooding frequency. Vadose Zone Journal, <u>https://doi.org/10.1002/vzj2.20150</u>.
- Dahlke, H.E., Brown, A.G., Orloff, S., Putnam, D., A. O'Geen. 2018. Managed winter flooding of alfalfa recharges groundwater with minimal crop damage. California Agriculture, <u>https://doi.org/10.3733/ca.2018a0001</u>
- Kocis, T.N. and H.E. Dahlke. 2017. Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California. Environmental Research Letters, <u>https://doi.org/10.1088/1748-9326/aa7b1b</u>.
- O'Geen et al. 2015. A Soil Survey Decision Support Tool for Groundwater Banking in Agricultural Landscapes, California Agriculture Journal, <u>https://doi.org/10.3733/ca.v069n02p75</u>