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" America Is Using Up Its Groundwater
Like Theres No Tomorrow

Overuse is draining and damaging aquifers nationwide, a

New York Times data investigation revealed.



Groundwater Depletion 1900-2008

EXPLANATION
Groundwater depletion (1900-2008), in cubic kilometers
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Sustainable groundwater management
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Groundwater overdraft — recent trends

Cumulative Groundwater Loss
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» Data as of May 16, 2023
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Millions of Acre-Feet Millions of Acre-Feet

Millions of Acre-Feet

Northern California reservoirs (6) plus northern snowpack

Sacramento to Feather Rivers (w/shaded 2000-2015 normals)
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How to address 2-3 million acre-feet per year of
groundwater overdraft in the Central Valley?




Current plans to add
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Discharge (cfs)

Capture high-magnit
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High-magnitude flows

Sample Hydrograph and Available Threshold Across 3 Year Types Average total flow above 9(Qth percentile
6 Wet Below Normal Critical
Dec-Feb
Sac Valley 1.15 MAF 1.88 MAF
15000- th -
Flows above the 90" percentile S0Vl 0.5 MAE 0.97 MAF

10000-

Discharge (cfs)

Average flow above 90t percentile during wet years
|

| Sac Valley 1.75 MAF 3.01 MAF
O—J L-“—— JWL 1 O e SJ Valley 0.65 MAF 1.21 MAF
Oct Jan  Apr Jul OctOct Jan  Apr Jul Oct Oct

Jan  Apr Jul Oct
Date

— 90th Percentile

Averages were calculated over period 1970-2015

Kocis & Dahlke, 2017, ERL



Precipitation anomaly (in)

High-magnitude flows

Anomaly of Sierra Nevada Precipitation (1990-2023)

 HMF availability is 4.5 out of 10
years in San Joaquin Valley and 7/10
in Sacramento Valley.

* On average we see 20-40 days with

HMF in San Joaquin Valley and 30-
30-yr mean: 39.08 in 50 days of HMF in Sacramento

1990 1995 2000 2005 2010 2015 2020 Valley.
Year

Wet years provide 50% to 125+% more flow than average years.
To capture infrequent HMF, we need large recharge areas...

HMF = high-magnitude flow






UNMANAGED RECHARGE MANAGED RECHARGE




California Flood-MAR program
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California Flood-MAR program

A SRR Board Programs Drinking Water Water Quality Water Rights Notices Water Boards Search

Home | Waterrights | Waterlssues i Programs | Applications | Groundwater Recharge i Streamlined Permits

Streamlined Processing for Standard Groundwater
Recharge Water Rights

pus

QUICK LINKS
¢ Home
¢ Application Types
* FAQs
e Fact Sheets .
¢ Groundwater Recharge ; — e

Applications -

¢ SGMA Home

Recharge Basin

,\'\'

The state legislature enacted the Sustainable Groundwater management Act (SGMA) to address widespread overdraft and other undesirable
results caused by groundwater conditions in California’s groundwater basins. SGMA requires local agencies in high and medium priority
basins to develop plans that achieve sustainability in the basin within 20 years of implementation. Groundwater recharge is likely to be an
important part of achieving sustainability in groundwater basins, but local agencies may lack the water rights to divert and use that water
later. The streamlined permitting process for diversion of high flows to underground storage was developed, in part, to assist local agencies to
obtain necessary water rights. Those water rights will, in turn, help Groundwater Sustainability Agencies (GSAs) reach their sustainability

goals more quickly. ﬁ DWR' 2019
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* Crop tolerance

* Soil suitability

* Water availability

* Hydrogeology

* Conveyance capacity
Water quality

Photo credit: PPIC .

Don Camerom, G
-

* Cost & incentives
Water rights
Permits

* Shared governance

* Ecosystem services
and benefits
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eneral'Manager, Terranova Ranch
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Applied water (in)
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Treatments & Applied Water (2019 & 2020)
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Tons hay @ 12% MC/acre

Yield

Alfalfa in flood treatment could not be cut during 15t
cutting = double yield during 2"? cutting
34 and 4t cutting no statistical difference in yield
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FO ra ge Qu J | Ity aNDF = total insoluble fiber in feeds

ADF = |east digestible fiber, subset of aNDF
Ash = total mineral content

Flooding did impact digestible fiber content CP = nitrogen content of alfalfa amino acids

Amylase-treated

neutral detergent ! Crude Protein (CP)
iber (aNDF)

Commercial

4
= 7
(]

control 4 41 Fair b  33.76 Fair b 11.02 High b 21.07 Premium a
Irrigation controljl 42.2 Fair b  35.02 Fair b 13.22 High a 22.22 Supreme a
4 on 10 off 2 47.11 Utility a 39.35 Utility a 13.61 High a 19.01 Good b
3 on 4 off 3 48.28 Utility a 40.03 Utility a 13.29 High a 18.11 Good b
p< 0.001 p< 0.001 p< 0.001 p< 0.001
ADF NDF RFV TDN-100%  TDN-90%  CP-100%
Supreme <27 <34 >185 >62 >55.9 >22
Premium  27-29 34-36 170-185 6@.5-62 54.5-55.9  20-22
Good 29-32 36-40 150-170  58-60  52.5-54.5 18-20
Fair 32-35 4@-44 130-150  56-58  50.5-52.5 16-18
Utility >35 >44 <130 <56 <50.5 <16

ADF = Acid Detergent Fiber; NDF = Neutral Detergent Fiber; RFV = Relative Feed
Value; TDN = Total Digestible nutrients. RFV calculated using the Wis/Minn
formula. TDN calculated using the western formula. Values based on 100% dry
matter, TDN both 98% and 1@0%.
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Risk of groundwater contamination

mi ; £ ENTERPRISE Legend
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Site-specific nitrogen management
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Site-specific nitrogen management
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Nitrogen cycling processes

Murphy et al. 2021, VZJ; Levintal et al. 2022, Crit. Rev ES&T

Soil microbial

communities

M Proteobacteria
M Firmicutes

Planctomycetota
® Crenarchaeota

m Actinobacteriota

m Chloroflexi
Verrucomicrobiota

“ Nitrospirota

m Acidobacteriota

W Bacteroidota

B Methylomirabilota

M Desulfobacterota

Huang et al., ISMEJ, in review.
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Reactive nitrate leaching transport modeling

* Conditional kinetic HP1-MIM (HYDRUS-1D & PHREEQC Model)

* Dual-porosity, mobile-immobile zone reactive nitrate transport model

Simulated Nitrogen Transformation processes

(1) Leaching

(2) Mobile Nitrification (15t order)

(3) Mobile Mineralization (1t order)

(4) Immobile Nitrification

(5) Immobile Mineralization

(6) Denitrification

(7) Mass transfer (mobile- immobile phase)

Immobile

© Biorender, Nick Murphy (please do not copy)

Murphy et al. 2023, submitted



Reactive nitrate leaching transport modeling

HYDRUS-1D calculates

Water Flow 00(h) _ 5 oh ) .
(Richard’s Eq.) ot Ox {K(h)( Y e COSO‘:] S(h)

Solute Transport | | N
(ADE + Sinks + o, _. 0 (91)“ ac j oq¢; _ Sc.
Biogeochemical ot  Ox ox OX :
Reactions)

PHREEQC calculates
Denitrification (zero-order kinetic reaction; rates estimated from lab incubation data,
conditional on %PSF)
Nitrification (first-order kinetic reaction; rates assumed to be non-limiting, conditional on
%PSF)
Mineralization (first-order kinetic reaction; rates estimated from lab incubation data,
conditional on water content and temperature)
Adsorption of org-N, org-C, ammonium (Freundlich Isotherm, parameters from literature)

Murphy et al. 2023, submitted



Fine sandy loam
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Flooding Magnitude (cm H,0)

Role of flooding magnitude and frequency on nitrate leaching

Fine sandy loam

— 10mg L - -5mgl?

10 mg L1 MCL

Bulk Recharge Concentration (mg L2 NO,-N)
Flooding Magnitude (cm H,0)

Bulk Recharge Concentration (mg L* NO,-N)

30
Flooding Frequency (days) Flooding Frequency (days)

| Absolute values are influenced by initial soil nitrate concentrations... Murphy et al. In Prep.
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Nitrate leaching risk

Soil surface

Almond orchard - Modesto

8in | 0.2m Flooding
* 4-weeks
2ft | 0.6 m | .3 plots, 7785 sqft each

* 10m average recharge

33ft | 1m

Sensors Profile 1A, B ‘
* Soil moisture, EC, ¢ Groundwater
temperature _ flow direction
* 0, (gaseous)
* Redox potential
9.8ft | 3m * Ponding depth
* Water level

Profile 2A, B

sampling Profile 3A, B

Soil samples
Soil pore water

16 ft 5m Groundwater B0 125 250 500 Feet
N T T |

8

Groundwater table at 21 ft



Breakthrough of vadose zone contaminants
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MWS6 (Profile 1), MW7 (Profile 2), MW8 (Profile 3)

Subsurface heterogeneity

Depth (cm) MWe6 MW7 MwWS8

0-33 sC sC sC

, 33-66 sC sC scL

66-100 sCL sCL scL

100-133 SC sCL scL

: 133-166 sCL SiL scL

| 166-200 sCL SiL scL

'- 200-266 sCL sC FS

"~ Modestoclay loam 266-333 ES ES S

, ! 333-400 scL sCL S

g ‘ | 400-466 FS FS S
. Dinubafine i 466-533 S S FS
“sandy loam 0 533-600 s s S
S 600-666 sCL sCL S
666-733 FS S sCL

SC: silty clay, SCL: silty clay loam,
FS: fine sand, S: sand



Impact of subsurface heterogeneity on recharge

Indicators
Recharge efficiency (-)
Flow velocity (cm/day)

Travel time of recharge (days)

Oxidation-reduction potential (Eh)

MW6

87.8%

144.29

3.47

-331.9

MW7

88.8%

90.13

4.99

-200.7

MWS8

89.80%

163.81

2.63

-296.1

Mean

88.8%

135

3.69

-276.2

Variation percentage
-2.3%
81.7%
32.3%

65.30%

Zhou et al. 2023 submitted to WR



Nitrate leaching to groundwater

MW6

[ 1
50 4 —— : Groundwater nitrate
—— I . .
MW7 - concentrations in
a0 L~ Mwe : o
R === Recharge Evenl \{ i monitoring wells
< | | | !
£ 30 - —
= .
3 204 . \
o ‘
‘ I
10 4 [
i On-farm recharge event
I
04 : ,

T IR I I g
Sampling Date

Data from Thomas Harter & Spencer Jordan



Mobilization of geogenic contaminants

As and U concentrations in nearby groundwater monitoring wells during and after an Ag-MAR event

Arsenic (ppb)

Monitoring Well

Flooding

May e <IN Aug -8 Control Well
~o- Well 6
-o- Well 7
= - Well 8

Uranium (pp

May Flooding Jun Jul Aug
Date



How to site the b




Decision support

€ | ®  casoilresource.lawr.ucdavis.edu/sagbi/ ¢  Q Search B8 9O 3 A © @ 4

| Soil Agricultural Groundwater Banking Index

About Factors Map Settings

SAGBI Rating Rating Class
85 -100 Excellent

'

SAGBI Factors

The SAGBI is based on the following factors:

SAGBI Rating (modified):  *
60 - Moderately Good

.3 Component: Brentwood

View all factor scores

69 - 85 Good

» Deep Percolation ‘ 49 - 69 Moderately Good

29 - 49 Moderately Poor
» Root Zone Residence Time

B 529 poor v =
» Chemical Limitations ‘ . 0- Very Poor
» Topographic Limitations !!

» Surface Condition ’ 4

Y
| o~
L Wmt(s

r ‘/

-/

a

O’Geen et al. 2015, CalAg



Soil agricultural groundwater banking index
(SAGBI)

Soil Agricultural Modified rating to reflect

Groundwater deep tillage and removal
Banking Index of restrictive horizons

Deep Percolation regggazc%n’:iame Topography Chemical limitations  Surface condition
L ! I
Harmonic mean Erodibility factor (Kw)
Lowest K... in soil of K., (all horizons) Depth weighted and sodium
profile presence of drainage class Slope class average of electrical adsorption ratio
restrictive horizons and high conductivity (geometric mean of
shrink-swell soils scores for two values)

O’Geen et al. 2015, CalAg https://casoilresource.lawr.ucdavis.edu/sagbi/



https://casoilresource.lawr.ucdavis.edu/sagbi/

Soil-crop relationships

. . Infiltration Water applied Deep Yield - compared
i Al ol rate (in/hr) (ft) percolation (%) to control (%)
Alfalfa  Good stoner gravelly coarse 3.9 28 99 90
loam
Almond Moderately good Dinuba fine sandy loam 2.7 2 87 99
Tomato Moderately poor Traver fine sandy loam 0.24 1.95 85 125
Almond Moderately poor Tehama silt loam* 0.25 0.4 77 -

* Soil with hardpan



Soil trafficability after deep wetting

PR

Trafficability and risk

Median days to
trafficability after
flooding
l <5
N 5-10
10-15
15-20
Bl 20-25
25

of soil compaction i

RN N

. . . 0 50 100 200 300 400
Devine et al. 2021, J. of Soil & Tillage Research e wm—— Kilometers



Soil trafficability after deep wetting

Time-to-trafficability after deep soil wetting

ABOUT SOIL TRAFFICABILITY

=k

A Background

The time-to-trafficability SoilWeb product
is intended to help California growers
identify when fields are generally
trafficable after deep soil wetting during
crop dormancy or winter fallow periods.
The tool applies to wetting situations such
as managed aquifer recharge projects and
large rain or flood events. The primary
objective of the app is to help growers
avoid physical soil damage by agricultural
vehicles, so estimates are relatively
conservative.

See the topics below to better understand
this SoilWeb product.

Use the "Soil Trafficability" tab to modify
the trafficability estimate and map
settings.

¥V Definitions

¥ How to Interpret

V¥ Assumptions

V¥ Feedback
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https://soilmap2-1.lawr.ucdavis.edu/
soil-trafficability/




. . Crop: ( ) Specify: ( T _— 3
Safe water application e

Choose growth if crop is in bloom or leaved out. Choose dormancy if crop is dormant.

Ca | C u I a tO r Rooting Depth: 30 ; in Units: glnches — Centimeters

v

Enter rooting depth. Typical rooting depth for Almond: 12 in

Soil Texture:

o Select Look up by location

SELECT TEXTURE: [(Sandy loam 4]

max - =
Onset of water e hut off
5:_\°/ application / Initial Soil Water Content: »; : %
Cf)\' J Enter the volume of water per volume of soil, expressed as a percentage. Field capacity for sandy
loam: 22%
) No soil-atm gas exchange Soil-atm gas exchange
min > - Model Output:
¢ t Time of water application: 1.08 days
sat drain . -
VWC vs. time from water application
—) —> 0.40
0s
0.38
o) 60 0.36
e Root zone residence time, ¢, \ i
c";" il Bcritical o) '
= £ 032
@ N . TE) 0.30
Water application time, ty,p =
< > § 0.28
& 0.26
0 1 2 3 4
0.24
Days -
0.20
0 10 20 30 40 50 60 70

G a n Ot & Da h | ke, 202 1 Ag Watengt Time from water application (days)



e =

3 A ——
SR S oA ST
P RS e

(St
S




Future of Managed Aquifer Recharge in the U.S.
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Join the Flood-MAR network

& - C a floodmar.org Gﬁﬁ%@‘@@*ﬂ@i

m IFjIIl_JOBOD-MAR Home ~ Projects ~ Resources ~ Get Involved ~ Search

4

The Flood-MAR HUB is in beta mode. If you see any errors or have suggestions for improvement, please let us know! floodmar.network@gmail.com
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* Increased groundwater storage for next drought
* Fill up soil profile prior to growing season

* Frequency of wet years is decreasing in southwestern US

* Additional moisture stimulate mineralization (natural production of
nitrate in soils)

* Recharge with low nitrogen source water does dilute elevated
groundwater nitrate concentrations

* Management of soil salinity
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