Concentrate Management Wetlands

Thomas K. Poulson, P.E. Bureau of Reclamation

Salt - its everywhere...

Central Arizona Salinity Study (CASS)

Phase 1 (2003)–What's the Problem?

Phase 2 (2006)–What's the Solution?

Website: www.usbr/gov/lc/phoenix/programs/cass/cass.html

RECLAMAT

Facility	Water Source	Size (mgd)	Concentrate (mgd)		
Bullard WC RO	Groundwater	3.50	0.60		
Buckeye EDR	Groundwater	0.90	0.14		
Lewis Prison EDR	Groundwater	1.80	0.27		
Chandler RO	Ind. waste water	1.50	0.23		
Scottsdale W.C.	Effluent	27.00	4.05		
RainbowValley RO	Groundwater	60.00	9.00		
W. Canal Well Field	Groundwater	6.00	0.90		
W. Canal WTF RO	Surface/Ground	60.00	9.00		
CCWRP RO	Effluent	20.00	3.00		
GRIC RO Facility	Groundwater	5.00	0.75		
Water Market	Effluent	30.00 Total: 215 MGD	4.50 Total: 32 MGD		

Goodyear's Concentrate Problem

8,070 mg/L TDS

Bullard Water Campus City of Goodyear

Wetlands Concentrate Management Pilot Project

Innovative, green, inexpensive idea which has many positive benefits to society and the environment RECLAMATIO

Vertical Flow Wetlands

Total Dissolved Solids in the Gila River between 91st Ave and Gillespie Dam

Gila River Habitat

The Standards are we trying to meet or beat

							Drinking	
	Water	Gila River						
	Aquatic and Wildlife		Human Health		Agricultural			insitu
PARAMETER	A&Wedw Acute (mg/L)	A&Wedw Chronic (mg/L)	FC (mg/L)	PBC (mg/L)	Agl (mg/L)	AgL (mg/L)	DWS (mg/L)	TDS = 3120 (mg/L)
Arsenic	0.34D	0.15 D	0.08 T	0.03 T	2.00 T	0.20 T	0.01 T	< 0.005
Chlorides								1240
Copper				1.30 T	5.00 T	0.50 T	1.30 T	<0.01
Nitrate				3733			10.00	0.20
Nitrite				233			1.00	<0.10
Selenium		0.002 T	0.66 T	4.66 T	0.02T	0.05T	0.05 T	<0.002
Zinc			5.10 T	280.00 T	10.00 T	25.00 T	2.10 T	<0.06

RECLAMATION

Notes

D= dissolved

T= total recoverable

Wetlands Concentrate Management Pilot Project

Management Pilot Project

Bin 3 on Planting Day

Bin 4 - Arsenic

mg/L

Bin 4 - Selenium

mg/L

Selenium

Arsenic

Whole Effluent Toxicity (WET)

Chlorides are predicted to be approximately 1220 mg/L Most likely not able to pass WET test

Net Ecological Benefits R18-11-106

Work with ADEQ to implement the Rule

Work with Environmental community

Plants doing the best in the extreme environment!

1. Salt Grass (thriving)

2. Cattail (dominating in surface water Bin 7)

3. Olney's 3 Square Bull Rush (dominating in peat)

Salt Grass Bin 4

Cattails surface water wetland

Olney's 3 Square Bull Rush

Bin 4 Salt Grass deeper green

Media: Green Waste

Bin 3 Salt Grass much more brown

Media: Peat

Salt build up on surface

Influent Bin 4 Bin 6

Near Future

- First year Summary Report
- Decision Point Go Forward?
- Seek surface discharge & app permit 2012
- Design, construct & operate

Demonstration Project

Metals in the water are removed near Anaerobic zones

Microbes reduce Sulfate (SO₄₋₋) to Hydrogen Sulfide (H₂S)

Metals react with sulfide to form insoluble compounds

Compounds are retained in the wetland sediments RECLAMATION