

KNOW YOUR WATER.

March 3, 2020 The Next 40 Years:

Central Arizona Project Long-Range

History of Central Arizona Project

2

WRRC ANNUAL CONFERENCE 2020 WATER AT THE CROSSROADS: The Next 40 Years

1980 GROUNDWATER MANAGEMENT ACT

Patrick Dent, Director of Water Policy CAP: The Past 40 Years

1968 & 1980

KNOW YOUR WATER.

CENTRAL ARIZONA PROJECT

1980s

1980s Deliveries: 1.6 MAF

Arizona Cheers as Canal Carries Colorado River Water to Phoenix

By IVER PETERSON Special to The New York Times

PHOENIX, Nov. 16 — Water from the Colorado River began to spill into Phoenix's waterworks Friday, coursing 200 miles through the Central Arizona Project's big concrete canal. The project, the Federal Government's most expensive undertaking for supplying water, has come to stand for the increasing doubts some people have about whether such giant projects are worth the cost. Authorized by Congress in 1968, the

1990s

1990s Deliveries: 8.8 MAF

New Waddell Dam & Lake Pleasant

Avra Valley Recharge Project

2000s Deliveries: 15.3 MAF

 $(a^{(0)},a^{(1)},a^{(1)},a^{(2)},a^$

Agua Fria Recharge Project

2010s

2010s Deliveries: 14.9 MAF

CAP CENTRAL ARIZONA PROJECT

Total Deliveries: 40.6 MAF

1,250,000	
1,000,000	
750,000	
500,000	
250,000	

Supply & Demand in the CAP Service Territory

10

KNOW YOUR WATER.

Supply & Demand Projections in the CAP Service Area

AUSTIN CAREY, PLANNING ANALYST

The Next 40 Years

- Projecting water supply & demand conditions over the next 40 years...
 - Is challenging
 - Is highly uncertain
 - Is full of assumptions
 - Requires technical capability and capacity

CAP Service Area Model (CAP:SAM)

- Tool for projecting supply & demand in CAP's three county service area
 - 135+ entities (municipal providers, irrigation districts, Tribes, AWBA, CAGRD, etc)
 - 16 water supply types
- Not a hydrological model
- Designed to easily generate "what-if" scenarios

Basin Studies

- Goal: Evaluate future water supply & demand imbalances in key basins through the year <u>2060</u>
- Three studies in Arizona:
 - West Salt River Valley 2014
 - Eloy and Maricopa-Stanfield 2018
 - Lower Santa Cruz 2015
- Sector demand varies amongst study areas

Scenario Approach

- "Driving forces" of water supply, demand & reliability:
 - Growth
 - Climate Variability
 - Agricultural Trends
 - Policy Changes
 - Socio-Economic Changes
 - Behavioral Shifts

- Combination of multiple, internally consistent factors
- Represents a plausible narrative about how the future might unfold

- Magnitude and spatial distribution of water demand through 2060
- Supplies available to meet demands

. . .

Building Scenarios

- Part of the supply and demand subcommittee process
- Involves collaborative exercises amongst stakeholders
- Results in selection of a handful of unique and plausible scenarios to model

² Pumping capacity set to 125% of the maximum historical use (2010 - 2015)

³ Maximum historical pumping (2010 – 2015) plus DCP pumping capacity

Scenario Examples

Growth

Rate:

AZ Department of Administration (Low, Med, High Series)

Effect of Growth

Rate: Rapid Pattern: Outward

Housing Units

140,000

Municipal Demand

FNTRAL ARIZONA PROIFC

Rate: Slow Pattern: Infill

Climate

- Per capita water use
- Increase in crop consumptive use
- Shortages to water supply
 - Frequency
 - Duration
 - Severity

Colorado River Shortages

Effect of Climate – Water Provider

Water Supply Projections

ENTRAL ARIZONA PROIFC

Effect of Climate – Irrigation Districts

22

Takeaways

- Per capita use has been on the decline but growth rate drives municipal sector demand
- The location of growth is critical for:
 - Community characteristics
 - Types of water supplies
 - Regulatory requirements
- Agriculture demand is influenced by pumping capacity and surface water availability
- Industrial demand is site-specific

Recovery planning

KNOW YOUR WATER.

ANGIE LOHSE Recovery of Banked Water Planning and Implementation

Water Banking and Recovery

- Water banking and recovery is one of Arizona's strategies for mitigating future shortages on the Colorado River
 - Storing (banking) water underground
 - Recharge earns credits tracked by ADWR
 - More than 12 MAF of water stored
- During shortages, the stored water is pumped (recovered) from wells to supplement (firm) deliveries of Colorado River water

Arizona Water Banking Authority

- The State established the AWBA in 1996
- ABWA has accrued 4.28 MAF
 - 3.68 MAF for Arizona uses
 - .61 MAF for Nevada
- AWBA stores for a variety of purposes
 - To firm CAP M&I Priority Pool
 - To firm P4 M&I On-River users
 - To firm a specific portion of the CAP water held by tribes
 - To meet interstate obligations for Nevada

Recovery Planning

- Over time there have been a number of separate recovery planning efforts by AWBA, ADWR and CAWCD
- In 2014, a Joint Recovery Plan was developed
- Describes the basic framework, methods timing, volume and potential partnering opportunities
- Recovery Planning Advisory Group was convened by ADWR, AWBA and CAP to further refine recovery implementation

Likelihood, Timing and Magnitude

Joint Recovery Model 🤞	PROTECTING ARIZONAS MATER SUPPLIES PUTS NEXT CENTURY
Colorado River Supply	CAP Demands
CRSS Hydrology DNF 112 View Data	CAP Scenario 2045 Build Out Scenario 2017 View Data
CRSS Scenario DNF DCP from Orestes 12/19/19	NIA Firming Scenario Firmed NIA
Run Single Trace?	Additional Supplies to CAP
	Reduction in M&I Demands (%)
On-River Demands	Max AWBA M&I Recovery Percent 20
P1-3 2020 AZ Baseline (5-yr Avg.; flat) View Data	LTSC Accrual by CAP Contractors
P4 2020 AZ Baseline (5-yr Avg.; 1% Muni growtl $ \smallsetminus $ View Data	25% Reduction 🗸 🗸
P4 Ag-to-Muni Conversion	Progressive to 10% in T $ \sim $
Increase Muni by 1% per year (e.g., 30% in year X; 31% in year X + 1] $ \sim $	
	GRIC Firming
Nevada Request	Firming preference order (i.e., use of ICS, Firming Credits, and LTSCs)
Nevada Scenario No Request	ICS> Firming Credits> LTSCs
Additional During Shortage2	
	Export Results
Recovery for M and I	Results
proportion; V Run Run All + - Default Values	Recovery for NIA Model Results Firming Targets

CAP System Use Agreement

- CAP and Reclamation staff developed a legal framework outlining how nonproject water will move through the system
- "Firming Water" is available to satisfy reductions to contract orders due to shortage
- Sources of firming water are identified
 - Direct recovery into the canal
 - Exchanges

Agreement No. 17-XX-30-W0622

CENTRAL ARIZONA PROJECT SYSTEM USE AGREEMENT BETWEEN THE UNITED STATES AND THE CENTRAL ARIZONA WATER CONSERVATION DISTRICT

1. **PREAMBLE**: THIS CENTRAL ARIZONA PROJECT ("CAP") SYSTEM USE AGREEMENT, hereinafter referred to as ("Agreement"), is made and entered into this $2^{\frac{1}{2}}$ day of <u>february</u>. 20<u>17</u>, between the UNITED STATES OF AMERICA, acting through the Secretary of the Interior, hereinafter referred to as ("Secretary"), and the Central Arizona Water Conservation District, hereinafter referred to as ("CAWCD"), a multi-county water conservation district organized under the laws of the State of Arizona, each being referred to individually as "Party" and collectively as the "Parties".

WITNESSETH, THAT:

2. EXPLANATORY RECITALS:

2.1 WHEREAS, Section 301(a) of the Colorado River Basin Project Act ("Basin Project Act"), Pub. L. 90-537, authorized construction of the CAP;

2.2 WHEREAS, Section 102(a) of the Basin Project Act identified authorized purposes as "the purposes, among others, of regulating the flow of the Colorado River; controlling floods; improving navigation; providing for the storage and delivery of the waters of the Colorado River for reclamation of lands, including supplemental water supplies, and for municipal, industrial, and other beneficial purposes; improving water quality; providing for basic public outdoor recreation facilities; improving conditions for fish and wildlife, and for the generation and sale of electrical power as an incident of the foregoing purposes";

2.3 WHEREAS, the United States has allocated CAP water to various Arizona Indian Tribes as part of Indian water rights settlements or in anticipation of Indian water rights settlements, and has entered into Long-Term Contracts with several Arizona Indian Tribes for the delivery of CAP water;

2.4 WHEREAS, the United States has an interest in ensuring Arizona Indian Tribes with Long-Term Contracts receive their allocation of CAP water pursuant to the terms of their Long-Term

How Recovery will be Implemented

- Direct Recovery
 - Pump water through wells, treat and introduce directly into the CAP system
- Development of Exchange Agreements and partnerships with cities, irrigation districts and Indian communities
 - CAP staff have developed exchange partnership agreements
- Exchange partnerships are mutually beneficial
 - Lower recovery cost
 - Increased flexibility
 - May not require new infrastructure

Example of Recovery/Exchange

- An M&I subcontractor agrees to exchange 3,000 AF of their CAP water that would have gone to their water treatment plant for 3,000 AF of recovered LTSCs
- This recovered water could either be pumped from the subcontractor's wells or a third party that has infrastructure nearby
- The CAP water that would have gone to the M&I subcontractor can be redirected to those who do not have recovery wells or partnerships

Technical Studies – Tonopah Desert Recharge Project

- 2009 Direct Recovery Plan
- 2015 Recovery Plan Update
- 2016 Exploratory Well Drilling
- 2017 Test Well
- 2018/19 Alternative Recovery Locations
- 2019 Geophysical Studies

Key Take-away

- Arizona has mitigation strategies for Colorado River shortages
- On-going recovering planning and implementation will ensure Arizona is prepared for these shortages

CAGRD supplies & mid-plan review

KNOW YOUR WATER.

CHRIS BROOKS - SENIOR WATER RESOURCES ANALYST

Central Arizona Groundwater Replenishment District Planning and Water Supply Acquisition

Focus of Presentation:

o CAGRD Role in Assured Water Supply Program

- o CAGRD Planning Processes
- o CAGRD Water Supply Program
- Compare currently available supplies to projected obligations
- Need for future water supply acquisitions

CAGRD – One Component of an Assured Water Supply

- An Assured Water Supply must be:
 - Physically, continuously, legally available;
 - Of adequate quality;
 - Financial capability;
 - Consistent with management plan;
 - Consistent with *management goal*.
- Enrollment in CAGRD allows consistency with management goal.
- Water provider must have the legal right to a physically available, 100-year water supply of suitable quality in order to enroll in CAGRD.
- Replenishment obligation based on quantity of "excess groundwater" pumped by the water provider (annual pumping minus "allowable" groundwater).
- Replenishment occurs in same AMA (but East vs West distinction in Phoenix AMA)

CAGRD Plan of Operation

- By statute, CAGRD operates under a 10-year Plan of Operation.
- All Plans developed with public input and approved by ADWR.
- The current 10-year Plan of Operation was approved by ADWR on August 5, 2015.
- Describes the projected obligations and supplies to meet those current and future obligations.
- CAP Board policy also mandates Mid-plan review completed this year.
- All documents available at: www.cagrd.com/operations/plan-of-operation

Water Supply Program

- CAGRD Water Supply Program (WSP) established in 2012 to build robust water supply portfolio to meet future replenishment obligations.
- Water Supply Acquisition Plan in 2012, updated 2015, 2020 update underway.
- 25 agreements to acquire water supplies approved and implemented:
 - Incl. LTSCs, effluent, CAP leases, CAP exchange
- Agreements are unique to each particular water supply; designed to provide financial/water supply management benefits to buyer and seller.

Modeling CAGRD Water Supplies and Obligation

Variables:

- Existing water supply utilization
- Overall CAP supply utilization
- Shortage tier onset and duration
- Deployment of LTSCs
- CAGRD Enrollment
- CAGRD financials

CAGRD Phoenix AMA Supplies and Obligations

Modeling CAGRD Water Supplies and Obligation

Variables:

- Existing water supply utilization
- Overall CAP supply utilization
- Shortage tier onset and duration
- Deployment of LTSCs
- CAGRD Enrollment
- CAGRD financials

KNOW YOUR WATER.

CAGRD Tucson AMA Supplies and Obligations

42

Modeling CAGRD Water Supplies and Obligation

Variables:

- Existing water supply utilization
- Overall CAP supply utilization
- Shortage tier onset and duration
- Deployment of LTSCs
- CAGRD Enrollment
- CAGRD financials

CAGRD Water Supply Portfolio

Supply Class	Volume (AF)	Availability	Description
CAP M&I	8,311	Annually	Permanent entitlement
CAP Indian (GRIC)	15,000	Annually from 2020 to 2044	25 year lease
CAP NIA (GRIC)	18,185	Annually from 2020 to 2044	25 year lease, subject to shortage reduction
Effluent	2,400	Annually, began 2017	100 year lease
CAP Indian (WMAT)	2,500	Annually from 2024	100 year lease, awaiting final authorization; subject to shortage
CAP NIA	18,185	Annually from 2024	Permanent, awaiting final authorization; subject to shortage
TOTAL	64,581		
Long-term Storage Credits (current)	427,000	As needed	Currently in CAGRD Subaccount; equivalent to 4,270/year for 100 years
Long-term Storage Credits (future)	390,000	2020-2114	To be acquired under existing purchase agreements; equivalent to 3,900/year for 100 years
TOTAL (with current and future credits)	72.751		

CAGRD Replenishment Obligations – Planned vs. Actual

- Mid-plan review describes how recent obligations have trended below 2015 Plan projections.
- Multiple factors have limited growth of obligation in recent years.
- Current supplies approx.
 2X recent obligations.

ANNUAL REPLENISHMENT OBLIGATION, AND 2015 PLAN PROJECTION FIGURE 2.3

Future Water Supplies: Need and Availability

- Near-term supply outlook is positive
 - Ample wet water supplies with GRIC/GRWS agreements
 - Anticipated availability of NIA water
 - Shortage impacts firmed with LTSCs/Replenishment Reserve
 - Replenishment obligations trending below projections
 - No projected reliance on Excess Water
- Future supplies needed to hedge drought risk to CAP NIA supplies, meet longer-term obligations, meet RR targets
 - Primary need in Phoenix AMA
- Combination of wet water and LTSCs

Colorado River modeling

KNOW YOUR WATER.

Colorado River Modeling

Goals of Interstate and International Water Management

- Reduce Uncertainty, Increase Resiliency
- Develop Stable Operations
- Provide Opportunities for Collaboration
- Balance Upstream and Downstream Risks
- Acknowledge Shared Resources/Responsibilities
- Cooperatively Respond to Change & Crises

To Build <u>**Trust</u>** – Use consistent and verifiable interstate and international data with shared models/analytical tools</u>

3 Colorado River Modeling Tools

- Used to characterize the supply of Colorado River water available to CAP
 - 24-Month Study Model
 - Mid-Term Operations Model (MTOM)
 - Colorado River Simulation System (CRSS)
- All models include:
 - Hydrology (streamflows) USGS (historical) or NOAA (predicted)
 - Reservoirs (operating rules, laws, etc.) USBR
 - Water uses (diversions, returns, and losses) USBR (historical) or predicted

Modeling Tools: 24-Month Study Model

- Deterministic (forecast)
- Decision framework model
- Rule-based
 - 2007 Interim Guidelines + DCP
- ≤2 yr operations
- Hydrology Inputs
 - Colorado Basin River Forecast Center
 - "min-", "max-", and "most probable"
- Run parameters
 - Duration = 24 mo.
 - Monthly initial conditions
 - Monthly time-step
- Outputs of interest
 - EOM Dec. Lake Mead pool elevation
 - Aug 24MS
 - EOM Sept. & Dec. Lake Powell pool elevation
 - Apr & Aug 24MS

Modeling Tools: Mid-term Probabilistic Operations Model (MTOM)

- Probabilistic
- Planning tool
- Rule-based
 - 2007 Interim Guidelines + DCP
- 1-5 yr planning
- Hydrology Input
 - UB: unregulated flows as modeled by Colorado River Basin Forecast Center "Calibration Period (1981-2010)" precip. & temp.
 - LB: observed side inflows 1981-2010"
- Run parameters
 - Duration = 5 yrs
 - Initial conditions: current 24MS results
 - Monthly time-step
- Outputs of interest
 - Lake Mead pool elevation
 - Lake Powell pool elevation
 - Releases
 - Shortages

CENTRAL ARIZONA PROJECT

Modeling Tools: Colorado River Simulation System (CRSS)

- Probabilistic
- Rule-based
 - 2007 Interim Guidelines + DCP
- ≥10 yr planning
- Hydrology Inputs
 - Observed (112 yr record: 1906-2017)
 - "Stress Test" (1988-2017 extremely dry period)
 - Variable Infiltration Capacity (VIC [climate change scenarios])
 - Other ("Paleo", etc.)
- Run parameters
 - Duration ≤ 40years
 - Initial conditions: actual or predicted January
 - Monthly time-step
- Outputs of interest
 - Lake Mead pool elevation
 - Lake Powell pool elevation
 - Conservation volumes
 - State
 - USBR
 - Users

Uses

- 24-Month Study
 - Forecast system responses from operation decisions
 - Used to determine operating tier
 - April: for EOM September (Water Year)
 - August: for EOM December (Calendar Year operating tier)
- MTOM
 - Bridge from deterministic to stochastic (probabilistic)
 - Aid in initializing CRSS
 - Useful in determining near-term risk
- CRSS
 - Useful for planning and evaluating operating regimes and policy decisions
 - Large-scale trends
 - Provides for range(s) of system response to variations in:
 - Hydrology
 - Climate
 - Initial Conditions
 - Operation Decisions

Summary

- Standard issue software (RiverWare[™], RiverSmart [™])
- Standard issue data
 - USGS
 - USBR
 - NOAA/CBRFC
- Coordination with USBR
 - Curated environment
 - "Refereed" models
- Common set of facts and tools
 - Fosters relationships
 - Fundamental to negotiations
- Parties collaborate to improve model tools (e.g. NASA, ASU, Basin States)

CAP Climate Adaptation Plan

Primary Climate Change Impacts to CAP

CAP Climate Adaptation Plan

- Prepare the business and function of CAP to be resilient under an uncertain future impacted by climate change
- Explore CAP's organizational adaptation to climate change using scenario analysis

CAP CENTRAL ARIZONA PROJECT

CAP Climate Adaptation Plan Project Team

Multi-disciplinary team composed of staff representing the diverse range of CAP's organizational functions

The role of the team was to explore:

- The impact of climate change to CAP's water supply, infrastructure, organization, etc.
 (Climate Change Implications)
- The suite of adaptation measures that can be implemented in response to these impacts (Climate Adaptation Strategies)

Business Mapping and Scenario Planning Approach

Key Driver	Scenario 1	Scenario 2	Scenario 3
Colorado River supply	Frequent deep shortages	Normal CAP supply, with some infrequent excess supply above historical amount	Frequent deep shortages
Temperature	Significantly warmer	Warmer overall, but potentially seasonally cooler	Warmer overall, but potentially seasonally cooler
Local precipitation	More extreme events (drought or rain)	Historical	More extreme events (drought or rain)
Demand changes	Full contract demand (full CAP use)	Low contract demand (full CAP use)	Full contract demand (full CAP use)
Population of Central Arizona	High growth	Low growth	Low growth
Regulatory/legal/policy	Restrictive	Flexible	Restrictive
Interagency coordination/collaboration	Competitive/combative	Collaborative	Collaborative
Economic health	Strong economic growth	Weak economic growth	Weak economic growth
Technology	Rapid technological advances; mainstreaming; higher capacity of utilization	Status quo. Current level of technology and capacity for technological improvements	Status quo. Current level of technology and capacity for technological improvements

Most Common Implications

Challenge Implications	Opportunity Implications	Mixed Implications
#21. Biological: increased algae,	#39. Increased maintenance	#36. Change in seasonal demand
aquatic vegetation, terrestrial	efficiency.	curve.
weeds, invasive species.		
#41. Increased health and safety issues – temperature driven.		
#54. Ongoing need to manage perceptions (public image).		

Implications that affect all scenarios

Common scenario implication themes:

- Implications that CAP is currently managing or will need to manage in near future
- Mostly driven by temperature conditions (warmer future)
 - Biological incursions impacting canal system
 - Health and safety concerns due to higher temperatures
 - Managing seasonal customer demand due to "lengthening" of summer season
- Maintenance efficiency attributed to technology
- Need to manage public image is ongoing implication regardless of driver state

No/Low Regrets Strategies

25 Strategies that are easy to implement across all scenarios:

- No Regrets (easy to implement, applicable across all scenarios)
- **Currently being implemented by CAP** (e.g. banking water, generating ICS in Lake Mead, working with others to address water supply/demand imbalance)
- Can easily be implemented with little to no additional resources/staff (e.g. increasing water quality communication, staff and board outreach, prioritizing work activities)

#4. Communicate potential for	#51. Increase external/internal	#91. Staff subject to exposure; take
increased rates to customers.	communications on water quality.	days off when conditions are dangerous.
#11. Bank water.	#64. Increase training, awareness,	
	safety campaigns regarding	#99. Prioritize work activities.
#19. Reprioritize non-critical capital	weather issues/conditions.	
improvement projects to future		#103. Stakeholder workshops,
budget.	#82. Flexible operations to respond	collaboration, outreach.
	to changes in seasonal demand.	
#24. Create technology		#105. Board outreach and
replacement fund.	#83. Change maintenance schedule	education, on CAP's behalf.
	to reduce costs.	
#32. Look to CAGRD to help		#106. Staff outreach and education
supplement other areas.	#84. Enforce existing contract	(employees promote message), on
	condition that limits monthly	CAP's behalf.
#37. More intentionally created	supply to 11 percent of annual	
surplus (ICS) in Lake Mead.	supply.	#110. Increase
		patrolling/surveillance.
#39. Monitor changes to prepare	#85. Decrease rates due to	
for changes.	increased operational and/or	#116. Increase collaboration with
	maintenance efficiency.	other agencies to facilitate
#46. Operational flexibility to	HOC loss langest many flavible and	permitting and environmental
facilitate maintenance.	#86. Implement more flexible and	compliance.
Hao Change water availate	efficient operational practices.	#121 Collaborate with others to
#45. Share water quality	#97 Shift schodulos (alternative	#121. Collaborate with others to
customers (manage sustemer	#07. Shift schedules/alternative	imbalance
customers/manage customer	work schedule.	impalance.
experiations		

Strategies that are uniformly easy to implement in all scenarios

Conditional Strategies

- 10 Conditional Strategies:
 - Difficult to implement, address only one implication each
 - Only applicable when particular implication or set of conditions arise
 - Implementation difficulty can limit frequency of their application
 - **Huge financial investments in physical assets** (e.g. automating equipment, increasing system capacity to generate and store power)
 - Lengthy implementation timelines (e.g. pursuing legislation and regulatory changes)
 - **Time-intensive evaluations and analyses** (e.g. increasing staff, reducing or reorganizing staff duties)

#13. Workforce	#27. Firm more water supplies.	#76. Increase power generation,
restructuring/reduction.		capture, and storage.
	#36. Infrastructure investment:	
#20. Additional service charges.	groundwater facilities.	#81. Pursue regulatory changes.
#25. Incentives for stakeholders'	#62. Pursue legislation to further	#90. Automate
own projects in service area.	minimize subsidence.	resources/equipment.
		#119. Increase staff.

Difficult strategies that only address a single implication each

Next Steps

Implementation Process:

- Review generated adaptation strategies:
 - Identify strategies currently implemented <u>(No Regrets)</u>
 - Identify new strategies that can be easily implemented (time, resources [cost and manpower], frequency) (Low Regrets)
 - Identify difficult strategies to "preserve the option" to implement (Conditional)
 - Catalog these subset of strategies as implementation recommendations
 - Link the recommended strategies to the CAP's strategic plan

Central Arizona Project Climate Adaptation Plan

www.cap-az.com/departments/planning/climate-adaptation-plan

CAGRD
FINANCE
LANDS
LEGISLATIVE AFFAIRS
MAINTENANCE
PLANNING
CLIMATE ADAPTATION PLAN
CEIMATE ADAFTATION FEAM
COLORADO RIVER PROGRAMS
COLORADO RIVER PROGRAMS SERVICE AREA PLANNING
COLORADO RIVER PROGRAMS SERVICE AREA PLANNING POWER
COLORADO RIVER PROGRAMS SERVICE AREA PLANNING POWER RECHARGE PROGRAM
COLORADO RIVER PROGRAMS SERVICE AREA PLANNING POWER RECHARGE PROGRAM WATER OPERATIONS

CAP Climate Adaptation Plan

CAP began the process to develop its own organizational climate adaptation plan in 2017. The process began by assembling a team of CAP staff members (and CAWCD Board directors) who collectively represented key functions within the organization that are vulnerable to current and future impacts of climate change. Through the remainder of 2017 and 2018, the CAP team worked on developing future planning scenarios, climate change impacts, and adaptation strategies that are relevant to CAP's strategic planning. The stepby-step process of developing this information and a thorough analysis of the results and the impact on each CAP function were compiled into a comprehensive final report.

The exploration of climate change implications and adaptation strategies for CAP followed a business-mapping approach that analyzed multiple functions of the organization, outside of the traditional climate change planning areas of water and power supplies. The end result is a climate adaptation plan that provides a framework for climate impact assessment and adaptation options for the CAP organization as a whole.

Climate Adaptation Plan Executive Summary

ATER.

KNOW YOUR WATER

WRRC ANNUAL CONFERENCE 2020 WATER AT THE CROSSROADS: The Next 40 Years