

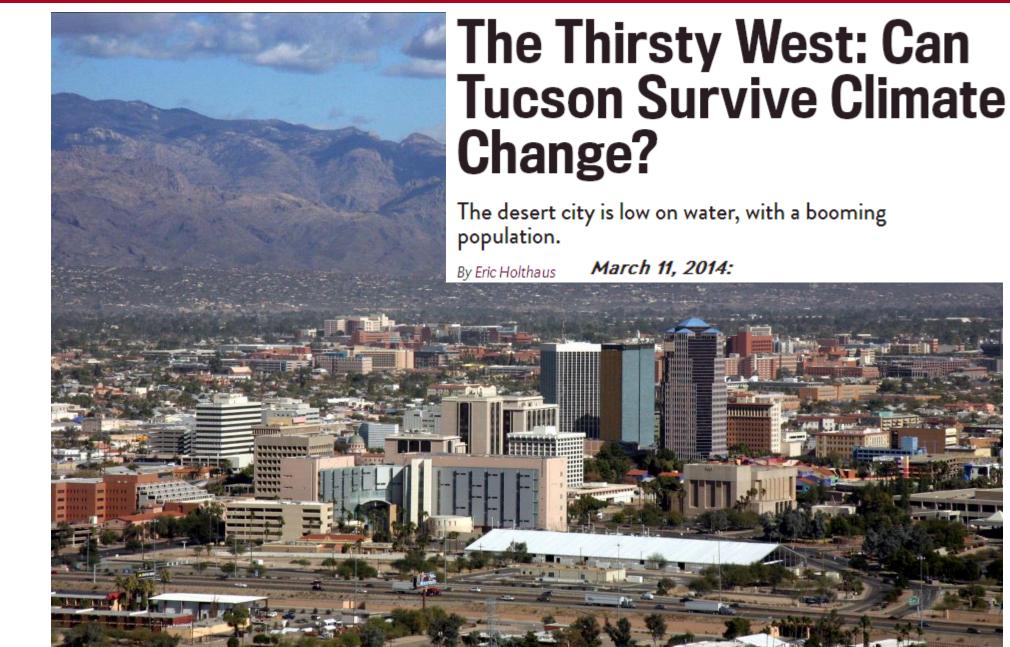
UA WEST Center

Co-directors: *Ian Pepper and Shane Snyder*

Plugged into WEST: New opportunities at the Water & Energy Sustainable Technology (WEST) Center

Ian Pepper University of Arizona

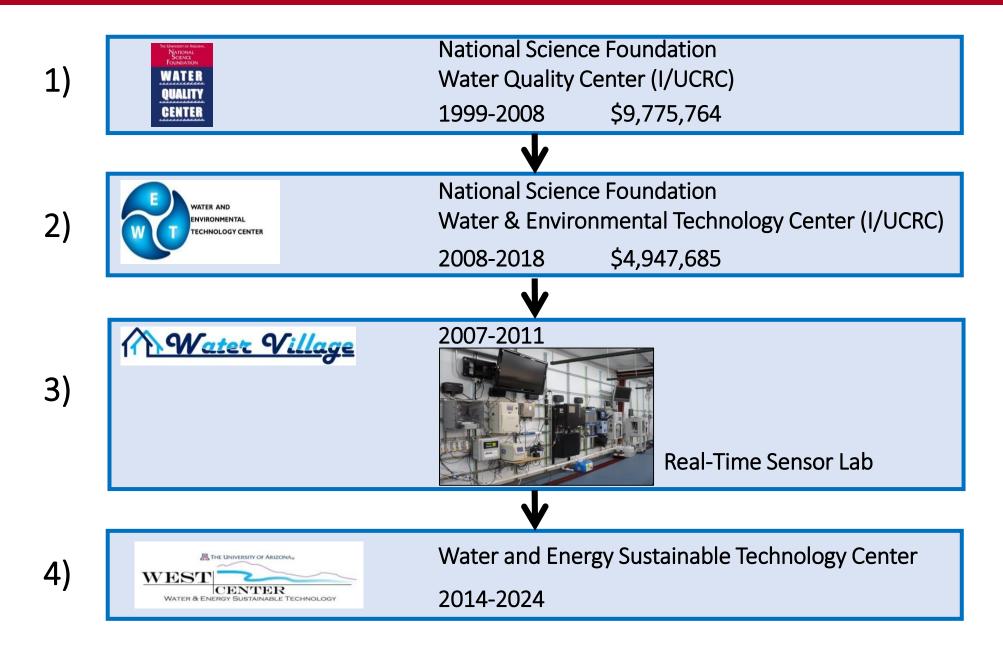
Presented: WRRC Brown Bag Luncheon April 26, 2017


- CAP Water
- 1968 Colorado River Basin Act signed by Lyndon Johnson - Colorado River water to Tucson via surface water canal
- 1973 Project initiation
- 1993 Implementation of CAP water unsuccessful
- 2000 Implementation successful: 144000 acre feet annually
- 2017 83% of Tucson Water used is CAP water

- CAP
- Water banking (1997)
- Water conservation (1970's)

Currently plenty of water, but.... things can change quickly

California 2011



Oroville Dam spillway 2017

The Path to Water Sustainability

- 2011 F- Pima County invites Pepper/Snyder to lead a UA presence in the County Water Reclamation Campus
- Dec. 2012 UA/County sign Intergovernmental Agreement
 - Pima County to fund new 22000 sq ft UA building
 - UA agrees to long-term commitment (5 years + 5 years renewal option)
 - Lease involves paying for utilities (\$0 per sq ft space)
- 2013 F- Planning, design of building
- 2013 Generation initiated: duration = 18 months due to Hamilton bankruptcy
- 2016 ⁵⁻ UA moves in, ERL and Water Village moves to WEST

- Under the auspice of Research Discovery and Innovation (RDI)
- Co-directors report to Kimberley Espy (V.P. Research)
- WEST receives RDI support
- WEST is a unique facility available to campus faculty

Tours for interested parties:

- Faculty
- •UA students in formal classes
- High school students
- •State legislators and staffers
- •Community groups

Research at WEST

- Need to have an idea (A great idea)
- Need to write a proposal
- •Need to get it funded!

Advantages of Including WEST in the Proposal

- Can describe the unique features of WEST
- Can include state-of-the-art technology development
- Close interactions with public and private sectors
- Public/private partnerships

QUESTIONS ?

Examples of WEST Projects

UA Faculty Member	Funding	Project
Jim Field (CHEE)	NSF	Anammox side treatment of effluent
Jim Farrell (CHEE)	NSF	Zero Liquid Discharge
Don Gervasio (CHEE)	Tucson Water	Corrosion
Chuck Gerba (SWES/WEST)	USDA	Non traditional irrigation water
Kelly Reynolds (Public Health)	Tucson Water/WET)	Real-time detection of viruses

WEST Scholars

- Fellowships for three undergraduates
- Funding to allow undergraduate research
- Research must be done at WEST
- Three @ \$7500 annually
- Call for applications in August of each year

ANYTHING MISSING HERE ?

INTERNSHIPS

- Public and private sectors sometimes want students to work on a project
- Need mechanisms to make this happen!

THOUGHTS ?

Industry Members brought in by Dr. Shane Snyder

NSF WET Center Members

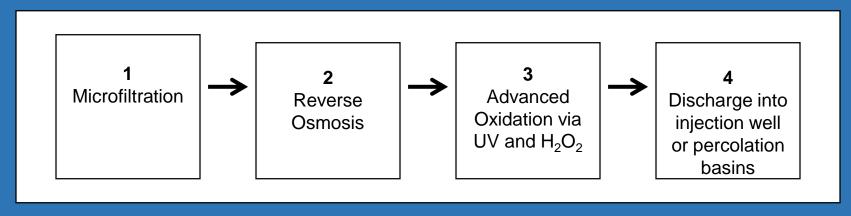
UNIVERSITY OF ARIZONA Water & Energy Sustainable Technology Center

California Association of Sanitation Agencies

AVRA GRO SYSTEMS INC

Tucson, Arizona

WEST MAJOR FOCAL AREA: RECLAIMED WATER FOR POTABLE REUSE


RECLAIMED WATER FOR POTABLE REUSE

- Effluent from wastewater treatment plant plus advanced treatment
 - microfiltration
 - reverse osmosis
 - advanced oxidation
 - activated carbon

The Orange County Groundwater Replenishment System (GWRS)

Wastewater is conventionally treated at the Orange County Sanitation District before it flows to the GWRS, where it undergoes advanced state-of-the-art purification process consisting of three technologies.

OVERALL GOAL OF ADVANCED TREATMENT

- Ensure the safety of drinking water for consumers with respect to contaminants
 - online sensors for detection of contaminants in real-time
 - documentation of destruction of contaminants in real-time
 - conducted at WEST

Shane has multiple projects involving advanced treatment

- RO
- AOP
- BAC

Today, only microbial projects presented (lan)

Advanced Treatment Technologies (ATTs) for Water Shane Snyder

Oxidative

Ozone

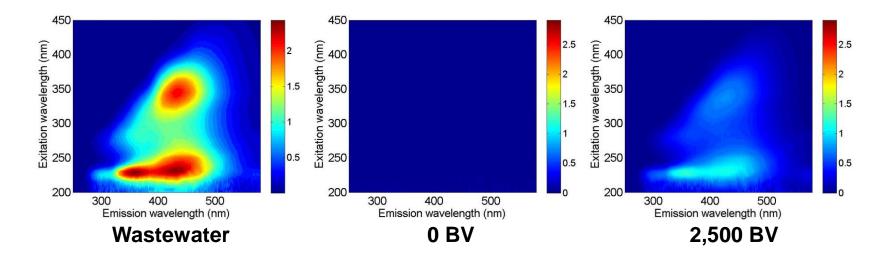
UV-AOP

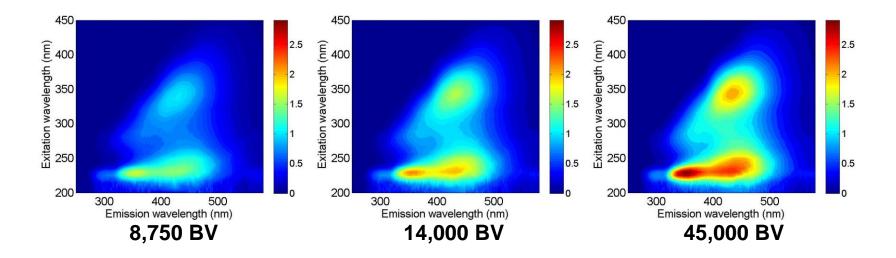
Adsorptive

Pressure Filtration Reverse Osmosis

Granular Activated Carbon

Granular Activated Carbon





Rapid Small Scale Column Tests (RSSCT)

Wastewater effluent on GAC treatment: Evaluation by fluorescence via excitation emission matrix

WEST Unique Capabilities – High Bay

- Co-located with Agua Nueva
 Wastewater Treatment Plant
- Range of water qualities plumbed in
 - Potable Water
 - o Reclaimed Water
 - Wastewaters
- Intermediate, Field-scale treatment
- Flow-through capabilities for reclaimed water
- Multiple advanced technologies

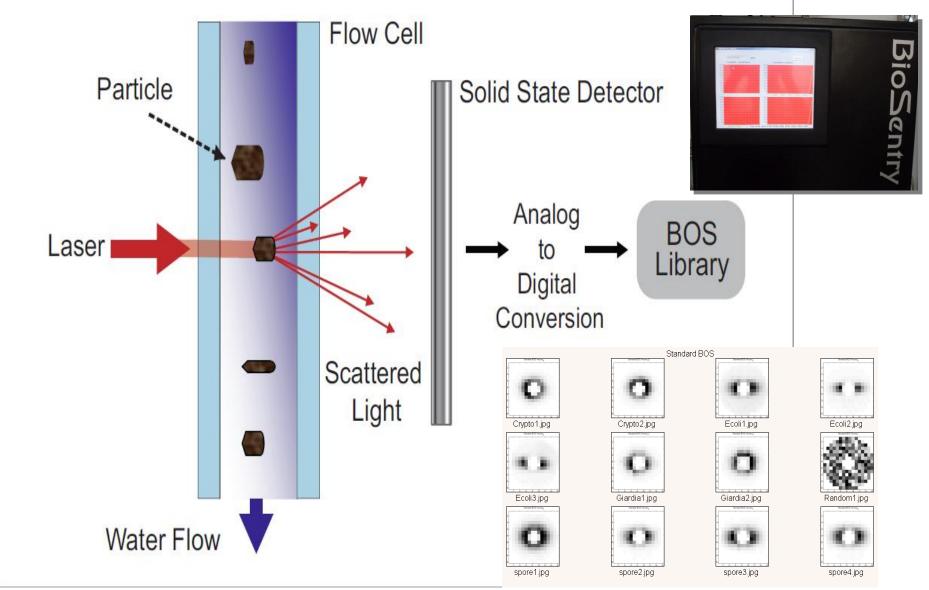
Interactions with WEST/Tucson Water

UNIVERSITY OF ARIZONA Water & Energy Sustainable Technology Center

WEST Sensor Lab

- Real-time Sensors for Microbial and Chemical Contaminants
- Existing Projects:

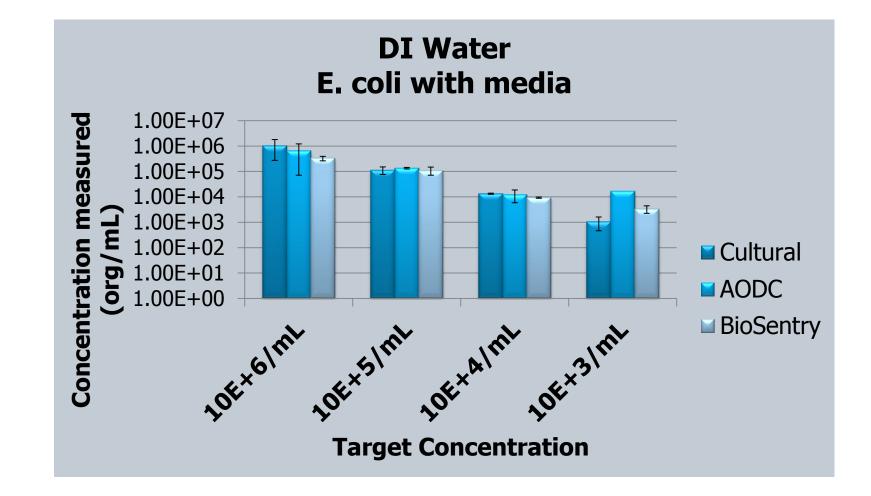
WateReuse Foundation 14-01
 Evaluation of New Microbial Sensor (AWQS)



Real UVT Online). Scientific MicroTol3 Turbidity Analyzer	Guard	ianBlue Monitor	0C	:can ctro::lyser	NiCaVis 705 IQ	WET 🐑 Lab SAFire		Sentry	ToxControl
General parameters Organic parameters			Inorganic parameters Microbial parameters				parameters			
pН	GuardianBlue Event Monitor		UVT 254 (%)	Real UVT Online		Chlorine (mg/L)	GuardianBlue Event Monitor		Total cell count (counts/100mL)	AWQS Lumin
Temperature (°C)	GuardianBlue Event Monitor		UVA 254 (cm ⁻¹)	REAL LECH Real UVT Online	NiCaVis 705 IQ	NO ₃ -N (mg/L)	S::Can Spectro::lyser	NICaVis 705 IQ	Toxicity (%)	Ultra
Conductivity (µS/cm)	GuardianBlue Event Monitor		DOC (mg/L)	S::Can Spectro::lyser	NiCaVis 705 IQ					
Turbidity (NTU)	GuardianBlue Event Monitor	S::Can Spectro::lyser	TOC (mg/L)	GuardianBlue Event Monitor	S::Can Spectro::lyser Xylem NiCaVis 705 IQ					
			Fluorescence (A.U.)	WET CLabs						

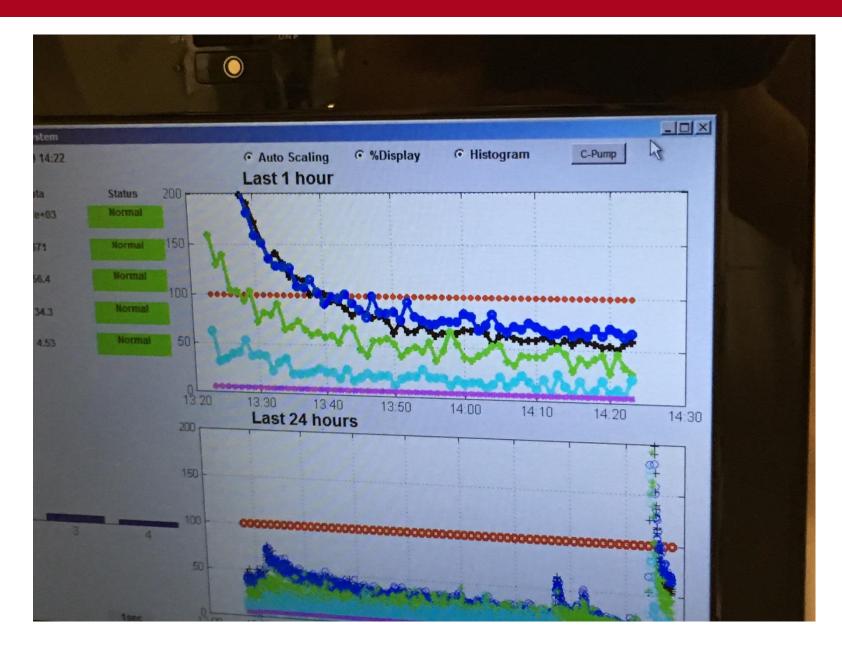
Real-Time Sensors for Microbes

BioSentry Detection of Escherichia coli



BioSentry Results for *E.coli*

UNIVERSITY OF ARIZONA Water & Energy Sustainable Technology Center


Microbial sensor based on multi-angle light scattering (MALS)

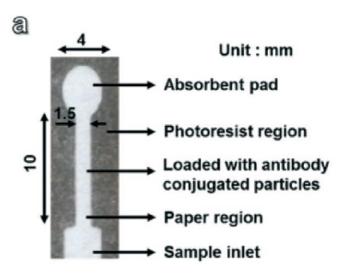
New prototype sensor AWQS; MALS

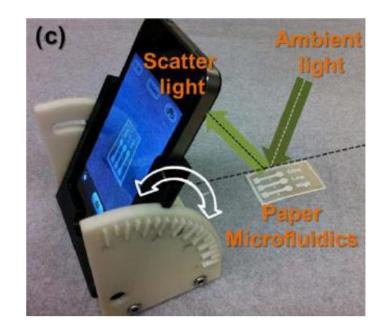
Tail end of a spiking experiment

Norovirus Smartphone Detection using Fluorescent Microscopy

Kelly A. Reynolds

THE UNIVERSITY OF ARIZONA MEL & ENID ZUCKERMAN COLLEGE OF PUBLIC HEALTH Environment, Exposure Science & Risk Assessment Center


Jeong-Yeol Yoon Soo Chung


college of Agriculture & LIFE SCIENCES college of Engineering Agricultural & Biosystems Engineering

Previous work: Virus Detection on Paper Microfluidics using Smartphone Technology

- Single channel paper microfluidics
- Mie scattering of VP1 capsid antigen agglutination
- Smartphone software optimization (angle, intensity, light)

 Smartphone's digital camera used to detect light scatter intensity at optimal angle, arising from anti-virus conjugated microbead immunoagglutination on the paper chip

Conclusion & Future work

- Previous limit of detection: 10pg/mL of anti-Norovirus conjugated particles using Mie scattering
- Current LOD improved to **1pg/mL**
- Semi-quantitative analysis by using difference of intensity (area of intensity)
- Next steps: experiment with measuring intensity change using Smartphone

- False positives
 False negatives
 Sensitivity of detection
- Detection of chemical and microbial contaminants via a real-time trigger
- Identification of treatment failures
- Integration of software data management, e.g., Labview
- Development of SCADA system
- Sensor maintenance & cost evaluation
- Self-monitoring
- Self-healing concept

WEST Supporting Labs

UNIVERSITY OF ARIZONA Water & Energy Sustainable Technology Center

Aquatic Toxicology (setup underway)

Bench Scale Lab & Testing Area

Analytical Labs:

•Cultural and molecular technologies

•Chemical Analysis for trace organics (Shane)

The Water Reclamation Campus

UNIVERSITY OF ARIZONA Water & Energy Sustainable Technology Center

Tucson / Pima County:

- Wide Range of Water Qualities
- Direct sources of wastewater & reclaimed water
- Neighboring Wetlands
- Infiltration Basins
- Santa Cruz Riverbank filtration

Beyond Tucson:

- Central Arizona Project (CAP) water supply direct to Tucson
- Groundwater supplies

Enhanced Perception of the Use of Reclaimed Water for Potable Reuse: Converting Reclaimed Water into Beer

Jeff Prevatt (Pima County), Chuck Gerba (UA), and Ian Pepper (UA)

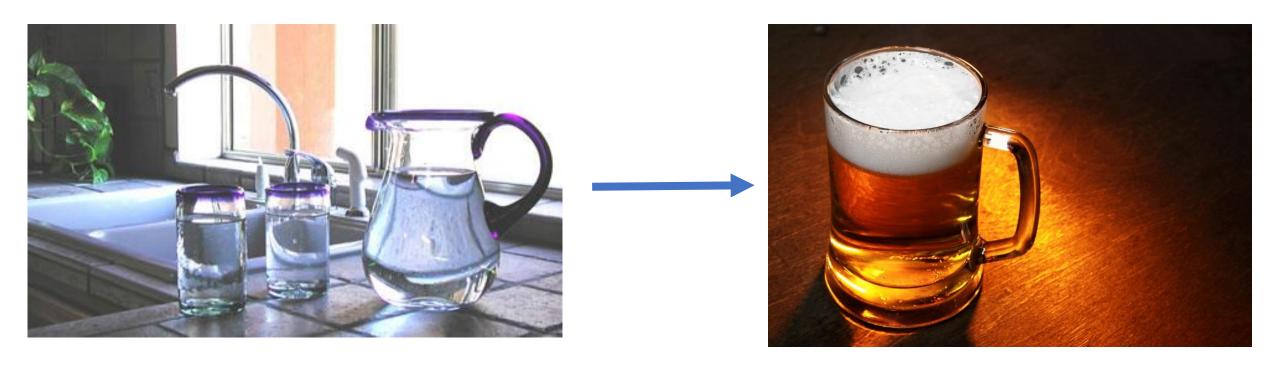
RATIONALE

- Reclaimed water can be subjected to advanced treatment to produce potable water safe for human consumption
- Biggest impediment is public perception the "YUCK FACTOR"

Question: How can this perception be changed? **Answer:** Beer

- Term coined by University of Pennsylvania bioethicist Arthur Caplan
- Induced fear and repugnance of something even if it is not science based
- Examples:
 - "Toilet to Tap"
 - "Franken food"

Arizona Water Innovation Challenge

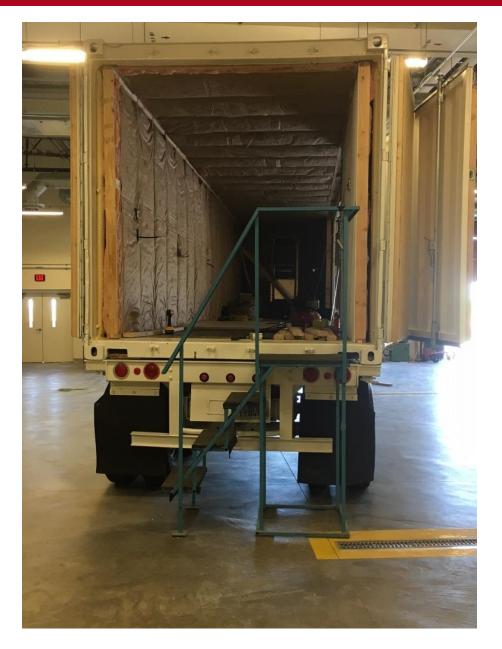

UNIVERSITY OF ARIZONA Water & Energy Sustainable Technology Center

- Innovative solution for water sustainability in southwest AZ
- 35 team entries
- Pima County Wastewater Reclamation Department led our team along with
 -Tucson Water
 -Marana Water
 -Carollo Engineers
 and... The University of Arizona
 Clean Water Service
- Prize = \$302,500 funded by Arizona Community foundation and Water Now Alliance

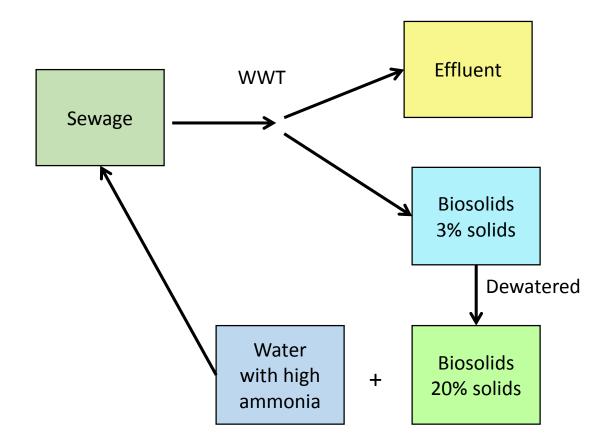
Objectives

- Enhance public perception of reclaimed water for potable reuse
- Treat effluent from WWT to potable water standards via advanced treatment
- Convert the potable water into beer
- Ensure that the water is free of chemical and microbial contaminants (WET Center focus)

- Build an advanced water treatment train on a mobile truck
- Drive truck to various towns in Arizona
- Treat effluent from WWTPs to potable standards
- Collaborate with local breweries to produce local beers
- Hold Beer Tasting Competition at National WateReuse meeting in Phoenix, September 2017


- Analyze water for incidence of virus via qPCR and Cell Culture (CC)
 -Pepper mild mottle virus (qPCR)
 - -Enterovirus (qPCR & CC)
 - -Adenovirus (qPCR & CC)
 - -Reovirus (qPCR & CC)
- Analyze sewage and final effluent after advanced treatment
- Need 12 log reduction of viruses from sewage to advanced treated water

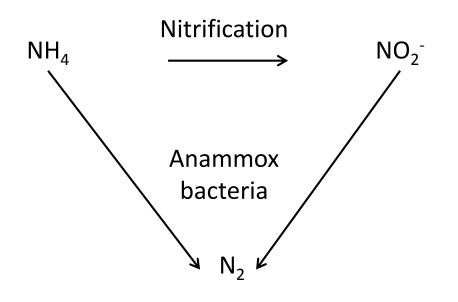
• Treatment train being built -Microfiltration, RO UV-AOP BAC


Interactions with WEST/Pima County Wastewater

Water & Energy Sustainable **Technology Center**

ANAMMOX FOR SIDE STREAM TREATMENT OF EFFLUENT

Jim Field (UA), Jeff Prevatt (Pima County), Chuck Gerba (UA), and Ian Pepper (UA)



- 0.5 mgd of water from the dewatering process
- High ammonium (1000 ppm)
- When put back into headworks, requires additional O₂ for nitrification
- Requires additional energy and \$\$\$

THE ANAMMOX PROCESS

- Microbial process
 - anaerobic oxidation of ammonium to N₂ using nitrite as a terminal electron acceptor

ANaerobic AMMonium OXidation

- Aerobic ammonia oxidizing bacteria (AOB)
 +
- Anaerobic ammonium oxidizing bacteria (Anammox)
- Anitamox source of culture:

\$2.5m

• Our source (Jim Field):

Anammox Bacteria

UNIVERSITY OF ARIZONA Water & Energy Sustainable Technology Center

Jim Field's culture

- Reduced aeration energy
 - 63% reduction in oxygen demand
- No supplemental carbon required
 - 100% reduction
- Less biomass (biosolids) produced
 80% reduction

Next Generation Sequencing for Process Control

Evaluate the use of 16S and 18S Illumina high-throughput sequencing technology as a process control and optimization tool for microbial consortia:

- Characterize microbial biomass and community structure
- Assess metabolic activity of microbial consortia via gene expression
- Determine impact of anammox on community membership and gene functionality

Activated Sludge Sample

DNA Extraction Kit

NNACTOR TRIGATES TTO OTATO COLOR AC ANALTER AT TREMARCES ATANCOL A COLOR ATANCOL A CALANAR A STOTATANA
and many many many many many many many many
mmmml hall man man man hand hand hand hand hand hand hand ha
A ANT T TA AN TACEC T TA TA TA ANA TAG BET TEECT TO BTG BE CEREBER BEANANA ACT CBC CERE CAACBER BAR AND ATB TABATE TE AT CCCT
Man Man Mar
mah man man and man and man man man man
An margan and an and alla margan and and an and an and an alla

Sequencing Output Example

- Analyze water from the dewatering process for incidence of virus via qPCR and cell culture (cc)
 - Pepper mild mottle virus (qPCR)
 - Enterovirus (qPCR & cc)
 - Adenovirus (qPCR & cc)
 - Reovirus (qPCR & cc)
- Analyze final effluent for viruses after anammox treatment

January 2017 Phase 1 Pilot-Scale

- 30 to 500 gallon reactors
- Operational for 12 months

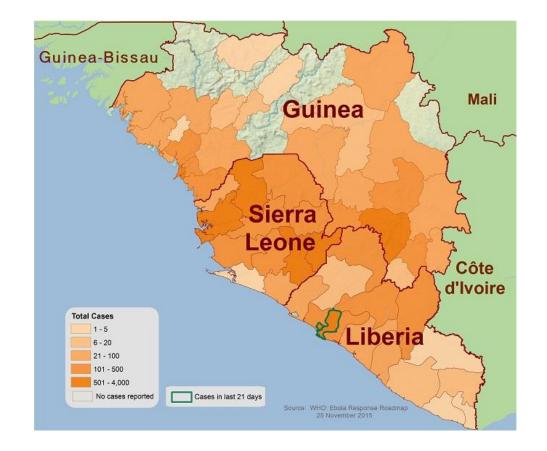
January 2018 Phase 2 Full-Scale Sidestream Treatment

• Anticipated savings for Tres Rios \simeq \$0.5m annually

WEST Interactions with California Association of Sanitary Agencies

UNIVERSITY OF ARIZONA Water & Energy Sustainable Technology Center

EBOLA: Does it Survive in Sewage and During Wastewater Treatment?


Chuck Gerba The University of Arizona

Implications of Ebola on

- 2014 Outbreak in West Africa: Sierra Leone and Liberia
 - 24,797 suspected cases
 - ~12,000 laboratory confirmed cases
 - 8,764 deaths
- Guinea continues to see widespread transmission with 3,351 laboratory confirmed cases and 2,536 deaths (75.7% Case-fatality rate)
- Ability to spread to US, UK, Italy, Spain, Nigeria, Mali and Senegal

Funded by CASA

FATE OF EBOLA IN THE ENVIRONMENT

- Concern over exposure via contaminated sewage
- Is current guidance adequate for waste disposal down the toilet?
- Need to determine fate of Ebola during wastewater/biosolids treatment

OBJECTIVE

Utilize viral surrogates for Ebola to evaluate its fate during toilet disposal and biosolids treatment

APPROACH

- Survival in human waste that could be flushed down the toilet with and without disinfection
- Survival during mesophilic and thermophylic anaerobic digestion of sewage sludge

SURROGATES

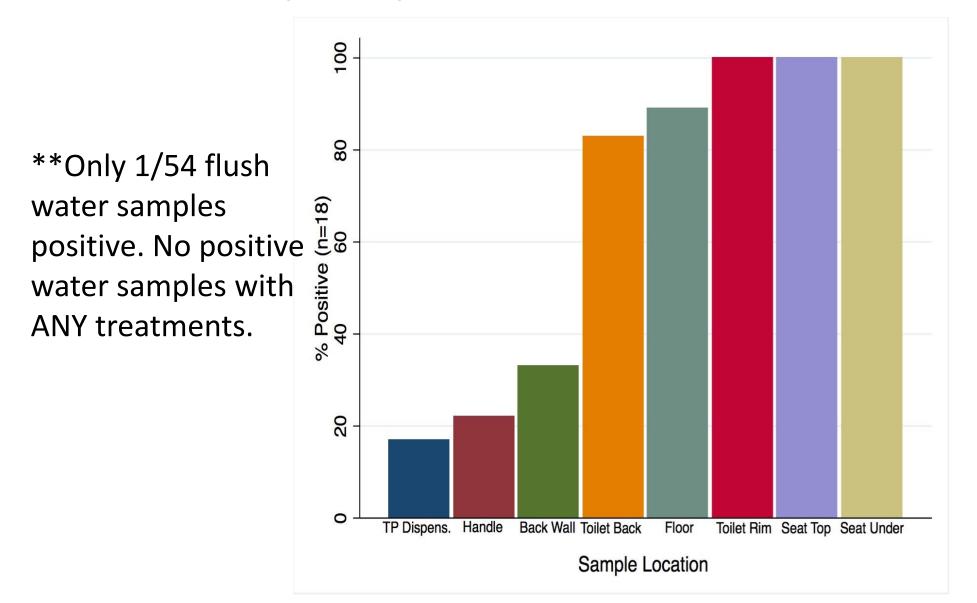
- MS-2
- Phi-6 (lipid containing phage)
- Murine norovirus

Impact of Flushing on Restroom Contamination

- MS-2 coliphage
 - Inoculum titer: ≈1xE+11 PFU
- Collect toilet bowl sample of water
- Water samples taken after 1, 2 and 3 flushes
- Sample fomites in restroom for aerosolized virus contamination

Ebola

Occurrence of MS-2 norovirus after a toilet flush



Surface Contamination of Fomites

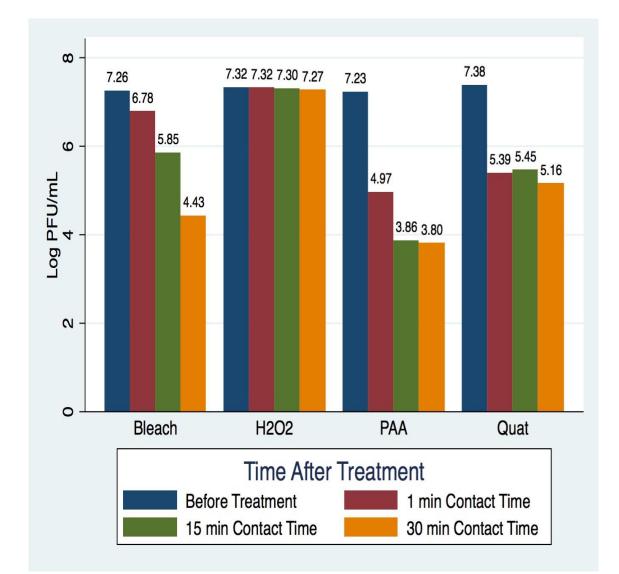
Geometric Mean Concentrations, by Sample Site (n=18)			
	Mean \pm SD (Log ₁₀ PFU)		
Sample Site	per surface (100 cm ²)		
Flush Handle*	1.65 ± 0.91		
Toilet Back	2.89 ± 1.04		
Back Wall	1.63 ± 1.36		
Floor	3.44 ± 1.08		
Toilet Paper Dispens.	1.49 ± 1.41		
Toilet Bowl Rim	3.88 ± 1.59		
Toilet Seat Top	4.21 ± 1.26		
Toilet Seat Underside	4.22 ± 1.26		

*denotes 90cm² total surface area

Percent of Sites in which MS2 was Detected (N=18)

Disinfectant Efficacy for Toilet Water*

Log-reduction (per mL) by treatment and contact time				
Treatment	1 minute	15 minute	30 minute	
Chlorine				
Bleach	0.48	1.4	2.83	
Hydrogen				
Peroxide	0.01	0.03	0.06	
Quaternary				
Ammonium	1.99	1.93	2.22	
Peracetic Acid	2.26	3.37	3.43	


*1 liter of trypticase soy broth added to bowl to stimulate bodily fluids

Ebola

UNIVERSITY OF ARIZONA Water & Energy Sustainable Technology Center

Log Survival of MS2 by Tested Disinfectants

TOILET STUDY CONCLUSIONS

- Flushing virus contaminated water leads to significant contamination of fomites within bathroom.
- Efficacy of disinfectants greatly reduced in presence of high organic load within toilet.
- Efficacy of disinfectants:
 - Peracetic acid > quaternary ammonium > bleach

RECOMMENDATIONS

- Disinfection of waste should be practiced, when possible
- Surface disinfection still very important after flushing waste to eliminate fomite transmission potential
- Peracetic acid or quaternary ammonium should be used for short contact times (1 min)

WEST/Private Sector

UNIVERSITY OF ARIZONA Water & Energy Sustainable Technology Center

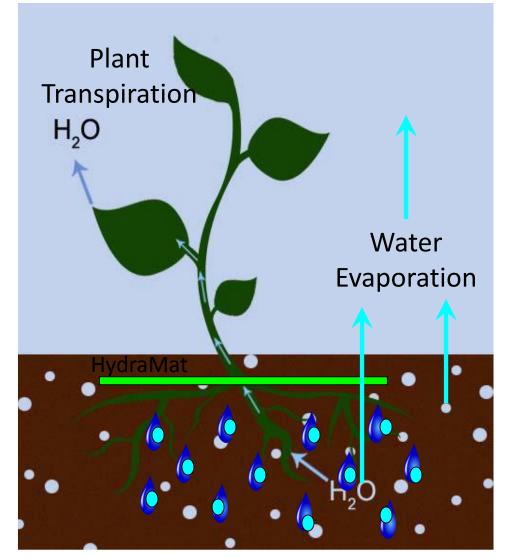
EcōsPure

Smart Polymers and Reduced Consumptive Water Use of Turfgrasses

Innovative Polymers

New polymer applied to a porous fabric (Hydramat) reduces consumptive water use of turgrasses by reducing evaporation from soil

- Polymer is polyethylene glycol (PEG) based
- Elastomeric polymer with small (nm) pores
- High surface area creates cool subsurface microclimate that condenses water vapor

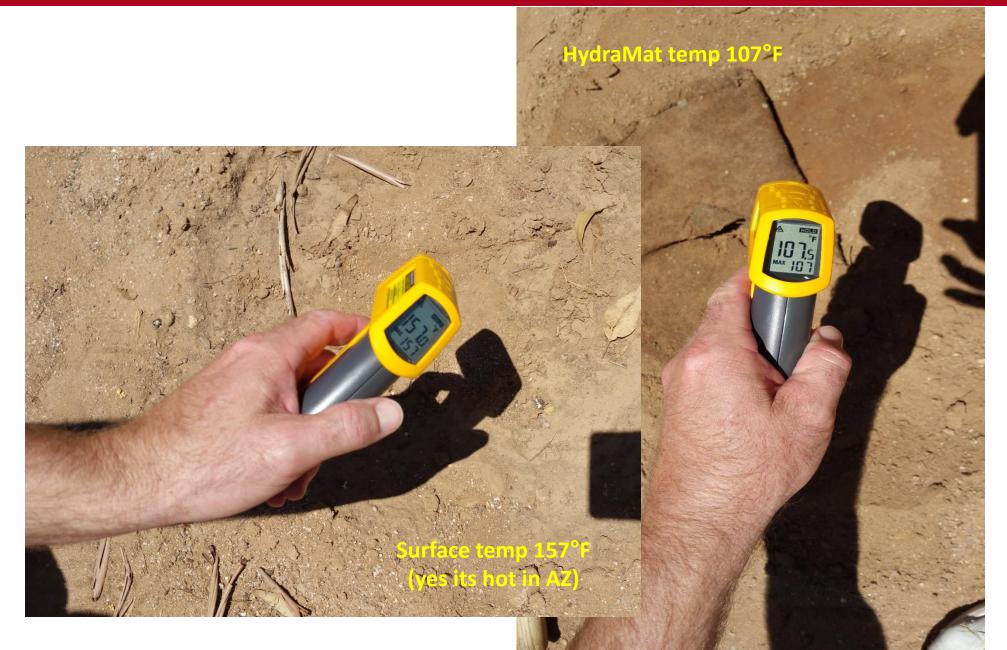

EcōsPure

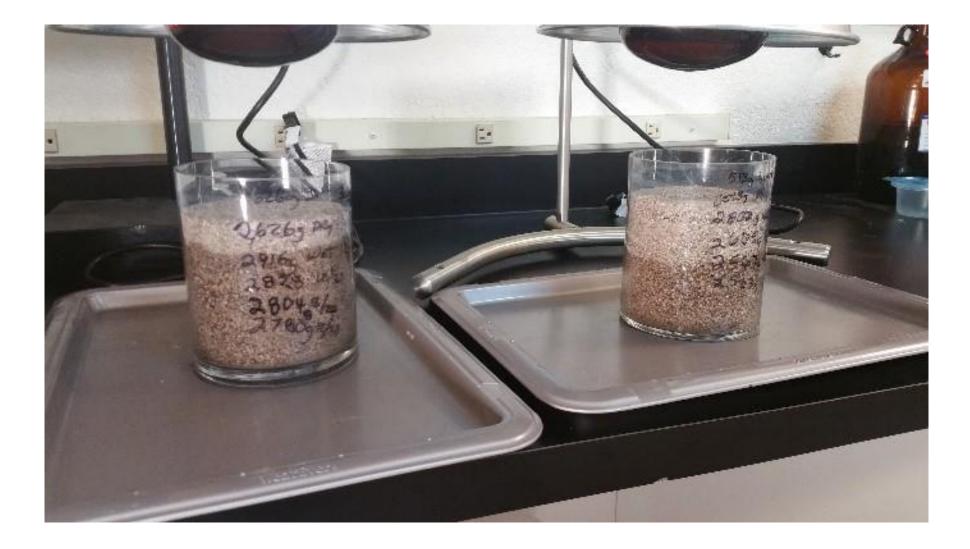
UNIVERSITY OF ARIZONA Water & Energy Sustainable Technology Center

How HydraMat Works

- HydraMat slows down evaporation
 of water
- Reduces irrigation water use by 50% or more

EcōsPure




HydraMat[™] by EcōsPure

Hydramat vs No Hydramat

- Demonstrate proof-of-concept for reduced consumptive water use of turgrasses through the use of Hydramat
- Evaluate the effect of Hydramat on plant root growth and soil bacteria

- PEG polymer applied to porous fabric which is layered beneath turfgrass sod
- Soil moisture sensors used to determine when the turfgrass should be irrigated, amount of irrigation water applied is recorded
- Soil cores taken periodically for heterotrophic plate count analysis and soil moisture content
- Root growth evaluated after 8 weeks
- Four replicates each of control (sod) and treated sod (Hydramat)

- Proof of concept for new technology to reduce water use by turfgrass
- Evaluation of effects of Hydramat on plant root growth and soil bacteria
- Final Report

Assessment of Innovative and Advanced Technologies for Control of Microbial Pathogens

- Molecular and microbial technologies for water treatment
- Antimicrobial coatings for use in the health care environment
- Development of innovative antimicrobials for wash water in the food industry
- Quantification of RO and ultrafilter membranes for removal of emerging viral pathogens – full scale systems
- Removal of emerging viral pathogens by advance oxidation processes – full scale systems

Interactions with WEST/Federal Government

UNIVERSITY OF ARIZONA Water & Energy Sustainable Technology Center

Determine suitability of nontraditional irrigation waters for food crops – USDA funded center

Channah Rock Chuck Gerba - \$1.7m

- 1) New indicators of viruses in water
- 2) Use of next generation sequencing to develop new indicators of water quality
- 3) Occurrence of the protozoan *Cyclospora* in water and wastewater.

Kelly Bright

