

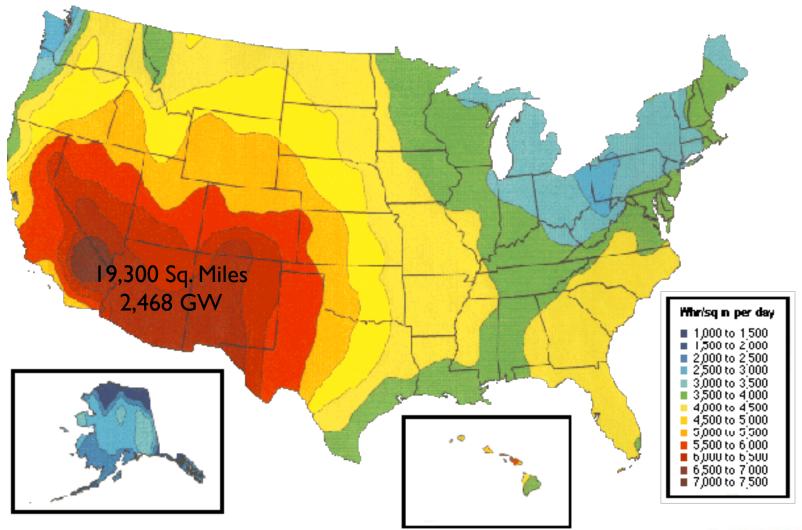
Solar Energy and Water Use in Arizona

WRRC Brown Bag Seminar September 16, 2010

Ardeth Barnhart Co-Director, Arizona Research Institute for Solar Energy (AzRISE) University of Arizona – www.azrise.org

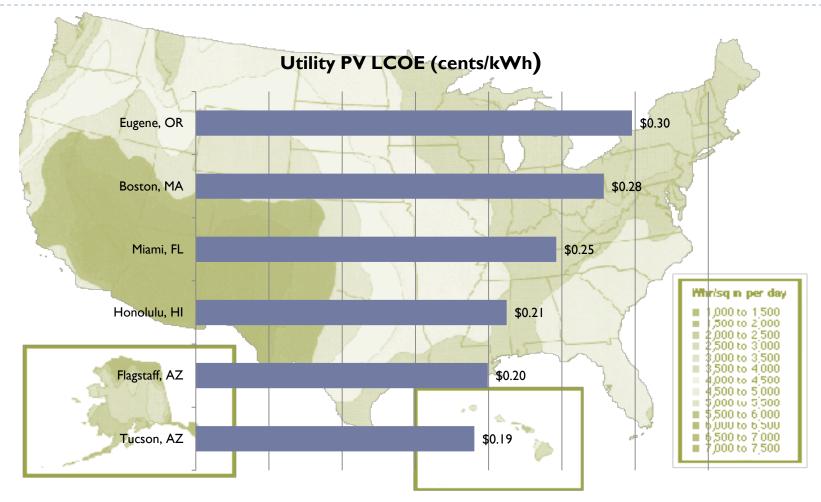
Overview

- Arizona Resource and Demand
- Water Use in Electrical Energy Generation
- Electricity Generation Technologies
- Water Use Analysis
- Conclusion


Electricity network

www.aemogas.com.au

Solar Insolation Data for the U.S. (NREL)

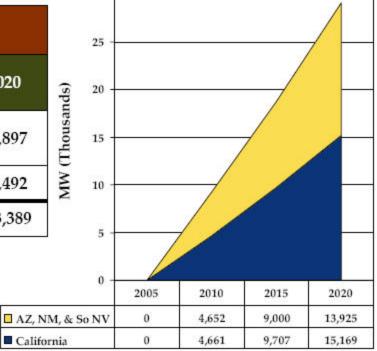


(Source: www.nrel.gov)

<u>A</u>

LCOE as a function of Solar Insolation

(Source : NREL – Solar Advisor Model 2010 – Flat Plate PV - Federal ITC incentive only)

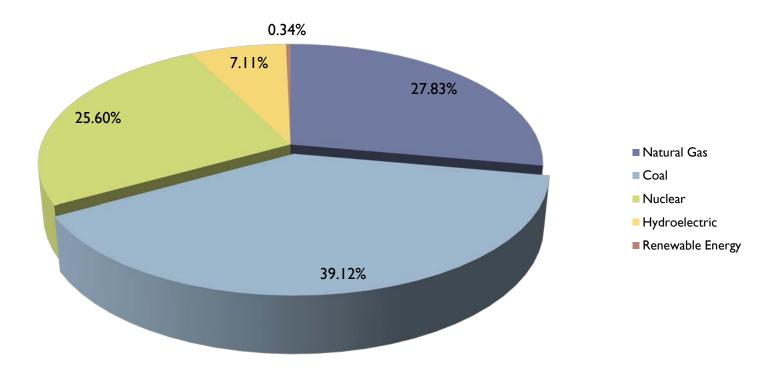


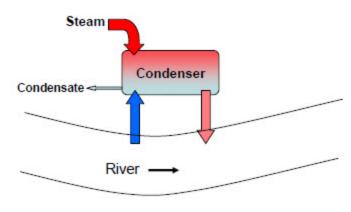
Arizona Peak Load Growth

NERC Sub- Region	Expected Peak Load (MW) 2005-2020					
	2005	2010	2015	2020		
AZ, NM, South NV	26,972	31,624	35,972	40,897		
CA	57,324	61,985	67,031	72,492		
Total	84,296	93,609	103,003	113,389		

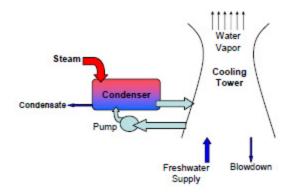
Peak growth in the desert southwest is forecasted to be nearly the same as CA.

Source: WECC, CA Energy Commission, NCI Analysis


30


Thermoelectric Generation is Dominant

Net Electricity Generation Arizona – June 2010


Water Use for Thermoelectric Power

Open-Loop Cooling System

- Withdraw water for cooling and discharge back to source

- 31% US generating capacity with 10 yrs generating life
- Availability of water is critical
- Discharge warm water

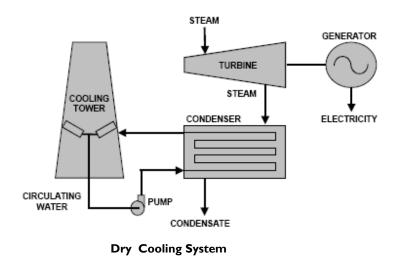
Closed-Loop Cooling System

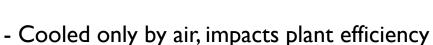
- Most plants installed since 1970 use evaporative cooling

- Withdraws less than 5% of water in open-loop

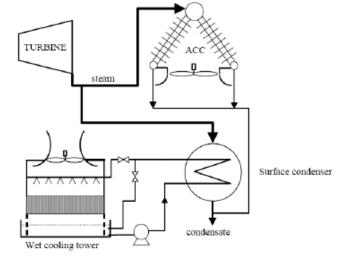
- Most water is lost to evaporation,

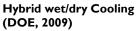
consumes more water


- Total freshwater consumption in US 3.3 Billion gals/day – 20% non-agriculture water use



(Source: US DOE, Energy Demands on Water Resources, 2006)




Water use for CSP Cooling

- Can only approach ambient air temperature -As outlet temperature increases, efficiency drops
- Hot and dry climates, drop up to 25% which means more fuel use and emissions

- Wet-cooled only on hot days
- Parallel wet and dry cooling facilities
- In the Southwest , hybrid cooling uses 50% of wet cooling and maintain
 99% performance

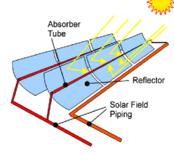
		2				
Plant-type	Process	Steam Condensing		ty (gal/MWh _e) Other Use		
Steam		Withdrawal	Consumption	Withdrawal	Consumption	
Coal	Mining	2		5-74		Mining of
	Slurry	0		110-230	30-70	coal
Fossil/ biomass/ waste	OL Cooling	20,000- 50,000	~300	~30**		consumes 0.07 to 0.26 billion gallons
	CL Tower	300-600	300-480			
	CL Pond	500-600	~480			
	Dry	0	0			
Nuclear	Mining and Processing				45-150	per day
Nuclear	OL Cooling	25,000- 60,000	~400	~30**		Thermo- electric power
Nuclear	CL Tower	500-1,100	400-720			
Nuclear	CL Pond	800-1,100	~720			
Nuclear	Dry	0	0			
Geothermal Steam	CL Tower	~2000	~1400	Not available		generation withdraws
Solar trough	CL Tower	760-920	760-920	8**		136 billion
Solar tower	CL Tower	~750	~750	8**		gallons
Other	1					per day
Natural Gas	Supply				~11	and
Natural Gas CC	OL Cooling	7,500- 20,000	100	7–10**		consumes 3.3 billion
	CL Tower	~230	~180			gallons per day
	Dry	0	0			
Coal IGCC*	CL Tower	~250	~200	7-10 + 130 (process water)**		
Hydro- electric	Evaporation				4500 (ave)	

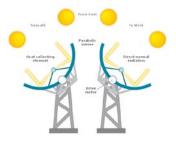
OL = Open loop cooling, CL = Closed Loop Cooling, CC = Combined Cycle

*IGCC = Integrated Gasification Combined-Cycle, includes gasification process water

Other Use includes water for other cooling loads such as gas turbines, equipment washing, emission treatment, restrooms, etc.

**References did not specify whether values are for withdrawal or consumption.





Solar Energy Technologies - Thermal

Water demand is dependent on location and type of CSP system

Parabolic Trough

- Abengoa Solar "Solana" Plant Gila Bend AZ
- Large-scale solar systems
- Steam turbine cycle
- 6 hour storage molten salt dispatchable
- 250 MW on 1250 acres agricultural land
- Generates 600,000 MWh/yr
- Wet cooling 928 gal/MWh

• future trough technology could yield capacity factors greater than 70% - possible baseload generation

•\$1.45 billion load guarantee DOE

Source: DOE, 2006/ NREL, 2010

Solar Energy Technologies - Thermal

Solar Two power tower in Daggett, California. Credit: Sandia National Laboratories / PIX 00036

Power Tower

- BrightSource Energy, Ivanpah generating station
- Large-scale solar systems

• Thousands of mirrors (heliostats) track the sun in two dimensions and reflect the sunlight to a boiler that sits atop a tower – super heats water to create steam to turn a turbine

- 468 MW on 4,073 acres
- Generate 1, 079, 232 MWh/yr
- Closed-loop dry-cooling technology, which reduces water use by 90 percent. Will use 100 acre feet per year
- Integrates with molten salt storage
- •\$1.37 billon loan guarantee DOE

Source: BrightSource, Inc.

Concentrating Solar Power

Dish Stirling Engine

- SunCatcher Solar Plant
- Modular 25 kW units
- Focuses sunlight onto engine/generator to produce electricity

•Stirling thermodynamic cycle

- Annual efficiency 23%
- Water use for cleaning surfaces
- No thermal storage
- SRP Tessera Solar 1.5 MW system in Peoria, AZ (1 acre foot/year)

(Source: www.srpnet.com)

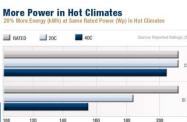
Solar Energy Technologies - PV

Photovoltaic

- Commercial and large-scale solar systems
- Silicon-based and Thin-Film Photovoltaic technologies
- 5 acres per MW
- Tracking systems
- Water used only for washing surfaces

Alamosa, Colorado 8.2 MW SunEdison for Xcel Energy.

Davis Monthan Air Force Base - Tucson


- •14.5 MW ground-mounted installation 130-acre plot
 - plus over 6 MW solar energy on housing
- Power Purchase Agreement (PPA)
- •The project is expected to produce about 31.5 million kWh of power per year, enough to meet about 35% of the base's electricity needs.
- Largest solar-generating capacity base in DOD
- 25% by 2025 renewable energy goal DOD

Concentrating Photovoltaics (CPV)

Solfocus

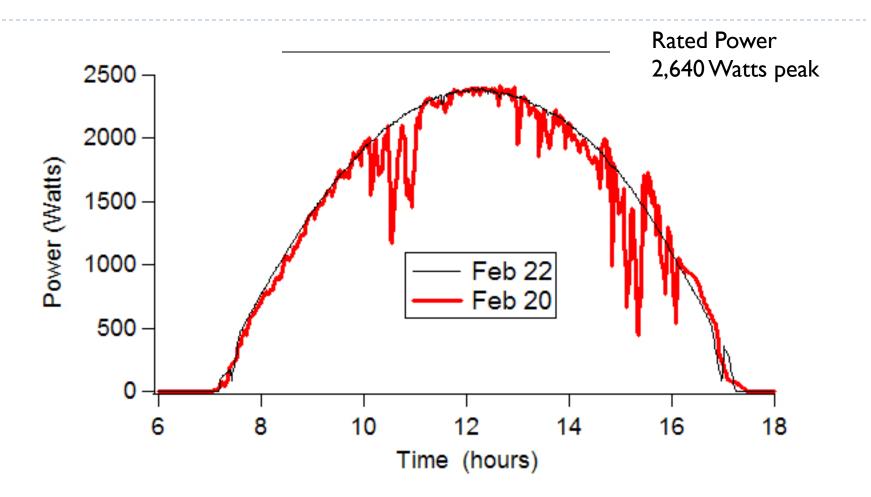
- Commercial and large-scale solar systems
- Concentrate the sun 500 times onto PV cells
- Dual-axis tracking
- 6 Acres for 1 MW 2.5M kWh/Year
- 3 months to deploy \$0.07/kWh

•(CREBS)

(Solfocus Solar - California)

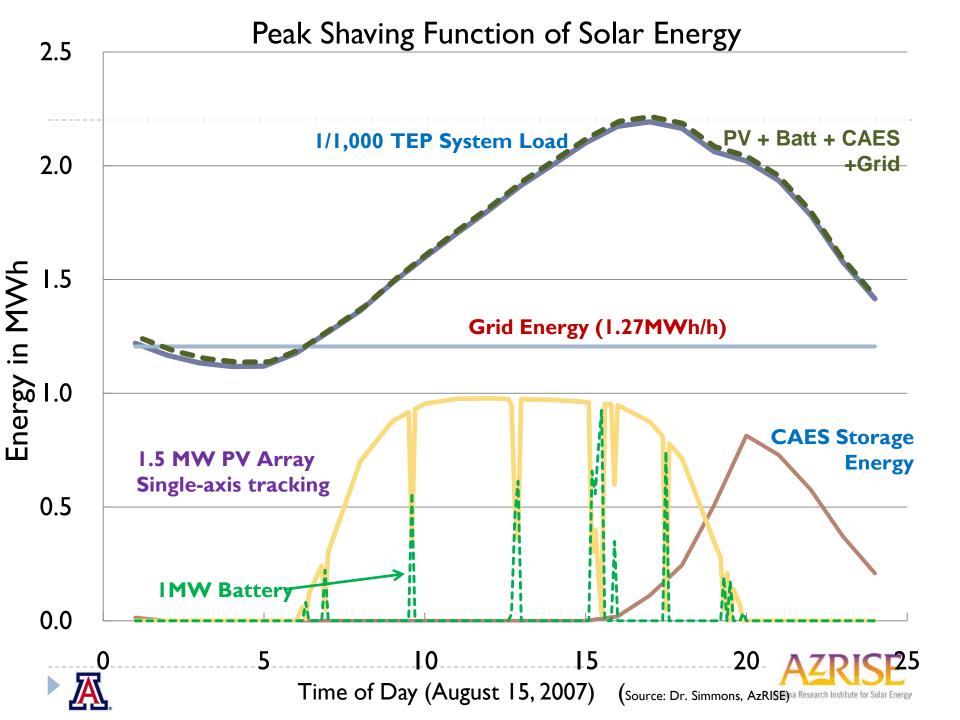
(REhnu- Dr. Roger Angel (UA) CPV)

REhnu

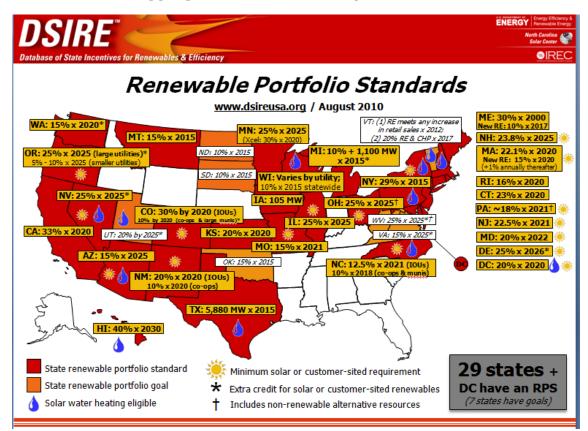

- Commercial and large-scale solar systems
- 30 kW system
- Concentrate the sun 1000 times onto PV cells triple-junction PV cells have 35% conversion efficiency
- Active cooling system

4.6 MW Springerville Generating Station (TEP)

• generates enough electricity to power 700 homes


Solar has short-term intermittency due to weather

Data from TEP Test Yard – Dr. Alexander Cronin



Arizona Renewable Energy Standard & Tariff

- Arizona REST 15% by 2025 and 30% Distributed Generation
- Annual solar energy generation equal to 9.54 TWh by 2030

References

- U.S. Department of Energy (DOE). Energy Demands on Water Resources, Report to Congress on the Interdependency of Energy and Water. December 2006. www. Sandia.gov
- U.S. Department of Energy (DOE). Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation. Report to Congress. wwwl.eere.energy.gov
- Congressional Research Service, Report R40631. Water Issues of Concentrating Solar Power (CSP) Electricity in the U.S. Southwest. June 8, 2009. <u>www.crs.gov</u>
- U.S. Department of Energy, Energy Information Administration. State Energy Profiles Arizona. www.eia.doe.gov
- U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, National Renewable Energy Laboratory (NREL).
 www.nrel.gov
- For information on incentives and rules and regulations for solar energy in the United States. The Database of State Incentives for Renewables & Efficiency (DSIRE). North Carolina State University. www.dsireusa.org

Solar Energy Companies:

- Abengoa Solar, S.A.. <u>www.abengoasolar.com</u>
- Brightsource Energy, Inc. <u>www.brightsourcenergy.com</u>
- SunEdison <u>www.sunedison.com</u>
- SolFocus, Inc. <u>www.solfocus.com</u>
- Rehnu, LLC. <u>www.rehnu.com</u>
- Tucson Electric Power Company (TEP) <u>www.tep.com</u>

Ardeth Barnhart

ardethb@email.arizona.edu

www.azrise.org

"Not all chemicals are bad. Without chemicals such as hydrogen and oxygen, for example, there would be no way to make water, a vital ingredient in beer."

- Dave Barry

