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Abstract
Droughts have severe impacts on the economy, society, and
environment. They also have impacts on groundwater and vice
versa. While most analyses consider drought and groundwater
as disconnected, we argue that drought and groundwater
management should be conjunctively considered. This article
presents some key interconnections, identifies challenges, and
discusses illustrative policy responses. We highlight several
advancements found in international scientific research and
describe future directions for drought and groundwater man-
agement. While many technological innovations have
improved our understanding of drought and groundwater’s
complex nature, policy and governance advances have not
kept pace.
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Introduction
Though droughts are a normal part of the hydrologic
cycle, their frequency and severity are increasing.
www.sciencedirect.com
Droughts can cause severe socioeconomic, environ-
mental, and political impacts, especially for arid/semi-
arid regions that are highly vulnerable to consequences
of groundwater overdraft [1e5]. Conversely, ground-
water management affects droughts in many ways, with

emergency strategies often deployed (e.g., drilling more
wells) that can exacerbate groundwater depletion [6].
Aridification is likely to increase, and droughts are likely
to be worsened, due to climate change [7]. Therefore,
users need a greater understanding of how to appropri-
ately manage drought and groundwater [3,8]. As the
2022 United Nations report states, groundwater has vast
potential and attention must be paid to its careful
management [9].

Certainly, decision-makers, water users, and scientists

have discovered new innovations for understanding and
managing groundwater in drought conditions [10]. For
instance, the European Groundwater Directive (2006/
118/EC) has been designed to complement the more
comprehensive 2000 Water Framework Directive
(WFD), which was established as an integrated water
management approach [11].

However, drought and groundwater management tend
to be considered separately and not as an integrated
system. While advances have been made in several areas

e from new indicators to specific strategies like
managed aquifer recharge e it appears that governance
advancements lag for drought and groundwater.

This need for greater understanding of drought and its
direct connection with groundwater does not appear to
correspond with the availability of published research.
We did not find an extensive published literature that
links drought and groundwater. In this context resides
the value of our contribution.

This article’s primary purposes are thus to 1) share
recent contributions about the conjunctive analysis
of drought and groundwater management and 2)
synthesize recent innovations and highlight gaps
and opportunities in characterizing, managing, and
governing groundwater. We closely examine major sys-
temic interactions involved with classifying drought
and groundwater, interrelated impacts of drought,
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governance measures, policy responses, and future
challenges (Figure 1). It should be noted that there are
multiple feedbacks between these elements within a
single water system, with climate change further
complicating the system. We begin with a discussion of
our methodology. Next, we describe major interactions
between drought and groundwater. We then discuss
selected management and policy responses like data

and modelling tools, recharge and conjunctive man-
agement between surface water and groundwater.
Special attention is given to governance and economic
instruments. Finally, we share our outlook for major
challenges, followed by brief conclusions.
Materials and methods
First, we relied on our own knowledge of the literature
focusing on drought and groundwater. Based on this, we
chose to analyze drought and groundwater conjunctively.
An important component of our methodology was a
search using Scopus and Google Scholar for articles
published since 2019 using the terms “drought” and
“groundwater management”. From an initial list of over
250 articles that we carefully examined, we chose 68
that exemplify, more directly, current literature themes

in drought and groundwater management. We excluded
non-open access articles and book chapters.

To strengthen our search, we conducted a further search
of articles focused on “drought management and
groundwater management” in January 2022. Surpris-
ingly, only 23 articles were published from 1990 to 2021
Figure 1

Analytical framework.
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according to a Scopus article title search (and only six in
an open access format). We also conducted a Scopus
search for the terms “drought management” and
“groundwater management”. While this search revealed
a much larger collection of documents, most did not
directly concern the connection between drought
management and groundwater management. We aimed
for international geographic diversity. Next, we orga-

nized findings based on several themes prominent in the
literature on drought and groundwater management.
These themes are structured around the characteriza-
tion and interconnected impacts, which includes ad-
vances in measurement, monitoring and modeling - as
well as current and potential challenges. We gave policy
responses special attention, and within this the case of
governance and economic instruments. It is worth
highlighting that this organization is our own and is not
comprehensive. There are, surely, rich contributions in
other languages like Spanish and French that are not

incorporated. On top of these disclaimers, our article is
limited by length. Despite these limitations, we believe
our work contributes to the current understanding of
the major science and policy issues related to drought
and groundwater. We detail our findings below.
Characterization and interconnections
between drought and groundwater
Recent research demonstrated how drought and over-
abstractions can significantly impact groundwater level
recovery and groundwater quality long after droughts
occur. Linking groundwater modeling with drought
Source: Authors.
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policy is needed to improve water management. While
plenty of data on groundwater and drought exist, some
data are at the wrong scale and needs to be linked to
other proxy data and/or downscaled. This is part of
taking a systemic approach to improve drought pre-
dictions and preparations.

Researchers have utilized several indicators to better

understand various characteristics of hydrological
drought on groundwater and that of groundwater defi-
cits, including groundwater levels [12,13], impacts of
exploitation [12,14], land management [15,16], and
crop management [15,17]. Drought can slow ground-
water level recovery in agricultural areas compared to
forested areas [12]. Abstractions, particularly at rates
that exceeded natural recharge, can prolong ground-
water deficits [14], decrease streamflow [18] and
impact long-term water storage [19]. Groundwater
deficits can be better managed through increasing the

areal coverage of fallow land, crop type choices [15],
irrigation types [17], and monitoring irrigation water use
[20]. Much research has been recently published (e.g.
Refs. [19,21e24]) on linking data from the Gravity
Recovery and Climate Experiment (GRACE) with other
remote sensing data and models to measure changes in
underground water storage. While GRACE data can be
effective for determining how large-scale agricultural
pumping negatively impacts long-term groundwater
storage [19,22] and land subsidence [25], its coarse
resolution requires linkages with other small-scale

remote sensing techniques and models [19,23e27].
Interferometric synthetic aperture radar (InSAR) has
also been employed for characterizing land subsidence
caused by groundwater depletion [28].

A firmer inclusion of groundwater modeling into drought
policy is essential for more effective water systems
management (see also the EU Groundwater Directive
[11]). Modeling innovations include the linkage of
aquifer responses with decision-making [30,31] and
distinguishing the effects of hydrologic deficits and
overexploitation [13,32]. Linking groundwater modeling

with crop water modeling in data-scarce situations has
been explored to address water-food linkages [30] and
actual evapotranspiration loss [33]. Other scholars linked
model outputs with drought indices [13] and downscaled
global climate model projections to understand future
aquifer impacts [34].

Droughts can significantly impact groundwater quality
and vice versa. Recent studies have found post-drought
increases in nitrate concentrations [35] and increases in
certain redox-sensitive ions and metals [36]. Ground-

water quality can also help determine the suitability for
best agricultural practices in drought-prone regions
[37]. Droughts, coupled with over-abstractions, can lead
to adverse human health outcomes for groundwater-
dependent populations [38,39]. In some locations
www.sciencedirect.com
(e.g., India, Italy, Mexico), poor rural families are forced
to rely upon groundwater with concentrations of arsenic
that increase during drought and exceed international
health standards [40e42]. New methods include
employing a signal analysis technique to understand
groundwater deficit risk and vulnerability [43] and using
reactive transport models for groundwater quality man-
agement and drought mitigation [44]. Other novel

methods included linking turnover time with ground-
water’s vulnerability to pumping [45] and groundwater
pollution risk [46].

Given the long-lasting impacts that drought may have on
groundwater, predicting future droughts, identifying
future uses and management priorities are all necessary.
Drought management is difficult given that its very
definition is dependent on several hydrological and so-
cietal factors [47,48]. More long-term data [49] are
needed to improve our understanding of droughts and

groundwater management. This data can be used for
improving predictions of drought through synthesizing
multiple hydrometerological forecasting products [50]
and linking large-scale climate systems and their tele-
connections with local and regional rainfall [51]. Ma-
chine learning for predicting hydrological variables (such
as groundwater levels) may also be employed soon
[7,52,53]. Technological advances have allowed for
greater understanding of long-term groundwater quan-
tity and quality trends connected with drought. Yet a
greater linkage with other data and policies are needed.
Management responses
Following Varady et al. [54], water management is un-
derstood as the actions for implementing policies, laws,
and decisions. Management innovations have mani-
fested through linking surface water and groundwater,

connecting water and energy, increasing water effi-
ciencies, and improving managed aquifer recharge
(MAR) based on location and timing. Yet the lack of
integrated, systems-level management continues to
limit overall efficacy of policy responses.

Conjunctive surface water-groundwater management
has been widely cited in the literature for buffering
supplies in times of drought [1,31,55e60]. The
conjunctive approach comes also from the perspective of
drought management itself [9,29]. One novel proposal

was to conjunctively operate a surface reservoir and
subsurface dams to address drought severity in South
Korea [59]. Fully coupled hydrologic models have been
built to analyse conjunctive management under drought
conditions, allowing for minimizing reservoir deficits
while introducing a recovery time for groundwater
levels [61].

Managed aquifer recharge (MAR) is becoming more
prevalent worldwide to improve groundwater security
Current Opinion in Environmental Science & Health 2022, 28:100364
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[62], including drought-prone regions in Australia [63],
Iran [64], and the US [65]. Researchers have investi-
gated and proposed specific effective management
strategies like using flood flows for recharge and irriga-
tion and developing groundwater reserves for droughts
[3,6,30] depending on how droughts propagate [51].
Emerging research themes include identifying best lo-
cations for recharge, determining which techniques are

most effective, and using MAR as part of conjunctive
management [65]. Pathways for studying locational
factors have included the determination of critical fac-
tors for successful recharge, including the adopted
infiltration area [64,66,67], implementation time frame
[66,68], and whether infiltration or injection is more
effective [63]. Linking surface water and groundwater
management through conjunctive management and
MAR continues to grow in use as techniques become
more sophisticated and creative. Yet, the localized
approach to implementing these techniques could prove

to be insufficient as climate change continues to worsen
drought severities.
Governance and policy
Though certain advances in groundwater governance,

management, and economics have been made, including
through collective action efforts, compensation
schemes, and stakeholder involvement, many issues
surrounding drought management and groundwater are
related to gaps in governance. There is a need to include
drought policies in long-term planning efforts and gather
more data to effectively apply economic tools.

Governance can be defined in this context as actors (not
only governments) designing and applying policies [69]
through institutional contexts with a normative foun-
dation [70]. Similarly, groundwater governance has been

defined as the overarching framework of groundwater
laws, customs, and regulations, as well as stakeholder
engagement processes [71]. While scientific advances
are clear in some transboundary groundwater basins, like
in North America [72,73], emerging problems of
groundwater insecurity are linked to governance gaps.
Groundwater management and politics are also interre-
lated through income and power disparities, as is shown
in the case of the San Joaquin Valley (US) [74] and in
southeastern Spain [60]. The Angas Bremer irrigation
district (Australia) is a rare example of local collective

action towards groundwater management [75]. Not
surprisingly, in many regions of the world the complex
nexus between droughts and groundwater is not part of
national proactive policies or is insufficiently enacted in
development planning and legislation [4,76,77].

Increased pressures on groundwater have created the
need for novel adaptation strategies. Innovative adapta-
tions include employing a trade-off frontier framework
linking clean energy, drought resilience, and groundwater
Current Opinion in Environmental Science & Health 2022, 28:100364
sustainability [78]. Various adaptation measures can be
enacted dependent on drought severity [76,79]. Often-
times, such as in California’s Central Valley (US), smaller,
domestic wells are much more vulnerable to drought
duration as unsustainable management favors larger,
agricultural users [79]. Arguably, drought imbalances
could be addressed through compensation schemes that
consider the opportunity costs of water use [80].

Economic policy tools generally have had limited influ-
ence towards more comprehensive drought manage-
ment and sustainable groundwater use but should play a
more significant role. This is true even in regions like
the European Union, where the pricing mechanism is
stated as a central piece of the WFD [11]. The appli-
cation of sound economic instruments is, however, not
without problems. Using economic tools requires the
collection of good data on water uses, water rights, and
prices [81]. Effective metering for all uses is a prereq-

uisite for the application of economic tools [29,58]. With
limited or non-existent control of well permits, as well as
inadequate pricing structures for surface and ground-
water, there are few incentives for water efficiency and
conservation [3]. An inadequate pricing system may also
explain low awareness in many places of the world where
water is still regarded a free commodity [81]. A sys-
tematic approach, involving the participation of local
stakeholders, is important for managing groundwater
resources [82,83].

Regarding the economics of agricultural groundwater
extractions versus extractions for domestic wells, Stone
et al. [80] present illustrative findings derived from
Tulare County in California (US). Using a welfare
maximizing approach, they found that limiting depth to
groundwater is not an effective policy because agricul-
tural opportunity costs far exceed domestic well costs.
Enforcing regulation and negotiating among water user
groups has transaction costs (see also in Jordan [76]).
Though the awareness of the need for sound ground-
water governance, policy, and management is growing
[84], many gaps remain unfilled. More policies need to

be enacted and tested for effectiveness.
Outlook for drought and groundwater
management
The outlook for drought and groundwater management

is very challenging and will require crafted knowledge
and coherent policy responses [3,7,72]. Scientific un-
derstanding will be needed to inform and guide decision
making, and thus reduce management uncertainties,
using more multidisciplinary approaches [48,57] and
complex systemic models of water reallocation [7,31]. It
is thus essential to better understand decision-making
processes for climate change preparedness [75] as
there is no mechanism to optimally extract water during
drought conditions [31]. Given the slow movement of
www.sciencedirect.com
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groundwater, anthropogenic impacts may last for a
relatively long time. Surface water interconnections
imply that deteriorated groundwater quality will even-
tually adversely affect surface water quality, thereby
reducing water availability [11]. In the European
context it is recognized that the economic assessment of
drought impacts is complex and under-researched [85].
As shown in the Asian experience, greater recognition

and understanding of political economy issues will be
needed [56].

The combined threat of droughts and stricter ground-
water regulations will force hard choices on all (espe-
cially agricultural) users and decision makers [47]. This
uncertain climate and regulatory context call for diver-
sifying water sources and crop choices (see California’s
Central Valley, US [2]). Diversification and demand may
increase the transfer of rural water to cities and
strengthen the need for well-crafted agreements [60,86]

and regulations despite associated economic costs
[1,87]. Groundwater will likely be exploited in new lo-
cations, such as sub-Saharan Africa [88]. Part of the
challenge in these areas will be establishing isotopic
baselines to understand groundwater quality dynamics
[89] and determining the suitability of groundwater for
best agricultural practices in drought-prone re-
gions [37].

Groundwater management is at the interface of drought
and flood policy [29,90], although policymakers do not

always see these interconnections until there is a crisis.
Monterrey’s (Mexico) experience shows that building
urban resilience to droughts requires focusing on in-
terconnections between droughts, floods, groundwater,
and surface water [81,91].

Though several advancements highlighted above will
undoubtedly aid managers in this task, political
commitment and long-term planning are critical for a
challenging future. The issue of finance deserves special
attention in this perspective [92]. A key issue is
fostering productive cooperation while incorporating

local context [69,72,77,93,94].
Conclusions
Our review of the recent literature confirms the crucial
and timely relevance of focusing on drought and

groundwater management. The review highlighted the
need for both a greater understanding of their inter-
connected impacts and a long-term, systemic perspec-
tive. The latter considers varying and complex
spatialetemporal characterizations with multiple, over-
lapping jurisdictions. These characterizations include
using remote sensing data to understand changes in
storage, linking data for understanding drought, and
modelling to link water, food, and policy decisions.
While these technologies have helped scientists make
www.sciencedirect.com
great progress on understanding relationships between
drought and groundwater management, much is left to
be discovered.

Groundwater quality and management techniques have
seen advancements. Poorer groundwater quality result-
ing from droughts and impacts to human health has
been further explored. New adaptation measures have

been developed and tested, particularly in the areas of
MAR and conjunctive management.

However, more holistic, long term, proactive, risk-based
policy responses are needed. Too often, reactive emer-
gency measures are commonly implemented through
restricting water distribution, rationing, and/or scarcity
pricing. Structural, supply-led responses may only
exacerbate current problems. Mitigation strategies are
oftentimes not reflective of true water scarcity and the
negative environmental externalities, in addition to

strong political opposition from powerful parties. There
is space for economic non-market valuation, with a
particular focus on the quantification of costs and ben-
efits. Ultimately, managing drought and groundwater is
at the interface of sound economics and politi-
cal commitment.

Given the fundamental necessity of drought and
groundwater management, science-based evidence
must be incorporated into public policy. Governance for
drought and groundwater should be tailored not only to

local conditions but also to governance settings [81]. In
these complex landscapes, informed risks will be
essential for well-crafted policy design and imple-
mentation [95], especially in the context of climate
change [96]. Last, but not least, there is the pressing
need to find better ways to communicate groundwater
issues during droughts. The international experience
[5,48,57,97,98] shows that educating and communi-
cating groundwater issues in droughts are crucial and
challenging tasks.
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