Sustainability in the High Atlas Mountains of Morocco - Facing the Impacts of Climate Change

Mark Apel

Area Extension Agent

University of Arizona Cooperative Extension

$)^{\circ}$

| Home | News | Journals | Topics | Careers | | |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: | :--- |
| Latest News | Sciencelnsider | ScienceShots | Sifter | From the Magazine | About News | Quizzes |

SHARE

A composite computer reconstruction of fossils from Jebel Irhoud shows a modern,
World's oldest Homo sapiens fossils found in Morocco
By Ann Gibbons \| Jun. 7. 2017, 1:00 PM

For decades, researchers seeking the origin of our species have scoured the Great Rift Valley of East Africa. Now, their quest has taken an unexpected detour west to Morocco: Researchers

College of Agriculture \& Life SCiences cooperative
ARIZONA
EXTENSION

ARIZONA EXTENSION

College of

College of
হасый
\& Life SCiences
COOPERATIVE
EXTENSION

ARIZONA LUUYERAIIVE

College of
Agriculture
\& LIFE SCIENCES
cooperative
ARIZONA EXTENSION

COP (Conference of the Parties) 22 Meeting on Climate Change Marrakech, November 2016

www.highatlasfoundation.org
Q. Lando'LakEs, nc

INTERNATIONAI OFVFI IPMENT

College of AGRICULTURE

The High Atlas Foundation is dedicated to catalyze economic growth and endorse grassroots development in disadvantaged communities throughout Morocco.

- Planting and distributing organic fruit and nut trees through nurseries managed by HAF (have already planted well over a million trees and are striving for a billion)
- Women's Empowerment Training
- Youth and School Programs

PROJET

> Grant through United Nations Environmental Programme

$\sim \$ 48,000$ awarded to HAF in March of 2017
"Contribution à la régénération des sols dégradés dans le Haut Atlas, pour soutenir le développement des activités génératrices de revenus,
la préservation de la biodiversité et l'appui de l'économie locale, à travers le rétablissement la préservation, l'amélioration et la mise en valeur des terrasses agricoles des riverains et la lutte contre l'érosion et protection des berges de l'Oued Azzaden au Nord Ouest du Parc National du Toubkal."

Octobre 2016 à Septembre 2018

College of
AGriculture
\& LIFE SCIENCES
COOPERATIVE

College of
Agriculture
\& LIFE SCIENCES COOPERATIVE

College of
AGRICULTURE
\& Life SCiences
COOPERATIVE
ARIZONA
EXTENSION

College of
AGRICULTURE \& LIFE SCIENCES cooperative
ARIZONA EXTENSION

College of
AGRICULTURE
\& Life SCIENCES
COOPERATIVE
EXTENSION

College of
AGRICULTURE
\& Life Sciences COOPERATIVE

雨

College of
AGRICULTURE \& Life SCIENCES COOPERATIVE

College of
Agriculture
\& Life SCiences
COOPERATIVE
ARIZONA EXIENSION

Site Assessment

- Size of nursery
- Irrigation layout
- Water source(s)
- Pump type
- Well size
- Access to electricity (ONE 'grid')
- Water storage - existing or potential
- Issues related to water demand - is demand met in hottest parts of year?
- Potential for converting to solar pumps?
- Other issues - \# trees distributed, status of trees trespassing

NURSERY MANUAL

Important Considerations for Starting and Expanding HAF Nurseries

[^0]
TABLE OF|CONTENTS

1. Introduction p. 1
2. Locating and Measuring the Nursery
3. Water Sources

Wells
Pumps
Storage
4. Irrigation

Basic Components
Steps for Calculating Needs Frequency of Watering

College of

3. Solar-powered submersible electrical pumps

Most solar pumps are DC (courant continu), since the power that is generated by the photovoltaic panels is also DC. It is possible to use photovoltaic panels with submersible pumps that are powered by AC (courant alternatif), but these require an inverter and require more complex, expensive control systems. In all solar photovoltaic systems, an electrical controller (regulateur) is necessary to make sure that enough energy from the sun is available to power the pump. Too little energy and the pump will become damaged. Conversely, the electrical controller also makes sure that too much energy from the sun won't damage the pump motor.

However, where there is access to the electrical grid to power a submersible pump, then connecting to the grid is preferable, assuming reasonable connection costs, since monthly electrical costs are relatively low. Secondly, solar pumps only work during daylight hours and only when there is ample sunlight. Therefore, proper water storage is required. Ample water storage

Regulator - to control pressure, maintain 40 kpA to 100 kPa for drip tape

Elbows To pour Cuine TTTpe
" T " to connect from distribution line to drip tape

Drip tape - flexible, perforated T. Tape purchased in large rolls

$\begin{array}{l}\text { Régula } \\ \text { pour... }\end{array}$

Coude pour gaine T.Tape Coudd

 Rour...
Resulateu

Gaine perforée T.Tape Gaine TTape perforee 150 mikrons non autorergutante Ver par bobine Ce 675 ml

Example of components with cost estimates

Travaux d'installation du system d'arrossege	Unité	Quantité	$\begin{gathered} \text { Prix } \\ \text { Unitaire } \\ \text { en Dh } \end{gathered}$	$\begin{aligned} & \text { Total en } \\ & \text { Dh } \end{aligned}$
Achat et mise en place de tuyau $\begin{aligned} & 63\end{aligned}$	MI	160	15	2,400
Achat et mise en place de vannes avec manction de $\emptyset 63$	u	3	85	255
Achat et mise en place de coude $\varnothing 63$	u	1	15	15
Achat et mise en place de "T $\emptyset 63$	u	1	20	20
Achat et mise en place de bouchon d'arret $\emptyset 63$	u	2	7	14
Achat et mise en place de vannettes	u	240	5	1,200
Départs joint	u	240	2.5	600
Achat et mise en place de gaine diririgation	M	4,000.00	0.8	3,200

Irrigation - Steps to calculating how much drip tape is needed and how much water will be delivered

- Square meters of nursery $\times 2=$ meters of drip tape needed (example: $1800 \mathrm{~m} 2 \times 2=$ 3600m)

- Meters of drip tape $\times 3$ or 4 or 5 , depending on pressure $(40 \mathrm{kPa}$ to 100 kPa$)=$ total potential output of water/hour for the nursery

For above example, this means output can vary between 10.8 m 3 or 18 m 3 per hour

Frequency of Irrigation

- Norm is to water every 2 days for long periods, like 5 hours each time during hottest time of year.
- Irrigation expert Tom Kimmel recommends more frequent irrigation - every day - less volume of water - 2 hours each time.

In the end, this results in less pumping per week.

4 times/week x 5 hours each time $=20$ hours of pumping
7 times/week $\times 2$ hours each time $=14$ hours of pumping

College of

College of
AGRICULTURE
\& Life SCiences
COOPERATIVE
ARIZONA EXIENSION

COLLEGE OF
AGRICULTURE \& Life Sciences COOPERATIVE

[^0]: By Mark Apel, F2F Volunteer, April-May 2017

