Quantitative Assessments of Water and Salt Balance for Cropping Systems in the Lower Colorado River Region

Andrew N. French & Charles A. Sanchez University of Arizona

External Collaborations

- U.S. Bureau of Reclamation: Water Smart
- USDA-ARS: US Arid Land Agricultural Research Center
- USDA-ARS: US Salinity Lab
- University of California Riverside: USDA/Artificial Intelligence for Agriculture
- Arizona State University and Planet Labs

Summary of Yuma Studies 2016-2023

- Revised water use estimates for 14 crops
 - 5 direct comparables, 9 new
 - Broccoli, Cauliflower decreased, Lettuce increased
 - Efficiencies high, 80-90%
 - First evaluation of efficacy of current vs. drip irrigation
 - Consequences of fallowing
- Updated salt balance and salt management recommendations
 - Identified and quantified salt loading events
 - Importance of pre-irrigation
- Evaluated USBR accounting of consumptive use of water by crops
- Tested and evaluated remote sensing to monitor crop growth
- Development of irrigation and salt management App

Consumptive Crop Water Use

Consumptive Water Use: EC vs. OpenET

Eddy Covariance Technique

Shortwave/Longwave Radiation

Wind

Heat Storage Photosynthesis

Soil Heat Flux/Radiation

$$R_n - G = H + LE + dQ + F$$

Eddy Covariance Errors

Energy Balance Closure

Flux Footprint

Water and Crop Growth 2016-2023

Alfalfa

Alfalfa Yuma Mesa YMIDD21-22 YMIDD21-22B Type Apr Jul Oct Jul 2021 Oct 2021 Jan 2022Apr 2022 ET0mm Type FTmm Type ET0mm ETmm

Eddy Covariance Data

Drone Data

Eddy Covariance Deployment

Irrigation Volume

Satellite Remote Sensing

Flood vs. Drip

Predicting Water Use: Weather & Remote Sensing

1. Heat Units

2. Irrigation detection

3. Plant Emergence

4. Fractional Cover

5. Crop Growth Modeling

Predicting Water Use: Heat Unit Tool & Remote Sensing

Heat Unit Predictor for Arizona

https://thermalir.shinyapps.io/myGDDv4/

C:/Data/rprogs/rprogs/predictLettuceETfromGDD_plusRemSenv2.R

Error in Climatology Less than +/- 1 SD

Summary of Studies at YCEDA

- Launched project in 2016 to fill gaps
- Collaborative project
- Quantified crop water use for 14 crops in Yuma
- Tracked where and when soil salts moved
- Published & publishing results
- Data to be archived and accessible
- Current crop studies on alfalfa and citrus
- Prediction methods using remote sensing