The Press and Pulse of Climate Change: Extreme Events in the Colorado River Basin

Amy L. McCoy (AMP Insights), Katharine L. Jacobs (University of Arizona), Julie A. Vano (Aspen Global Change Institute), J. Keaton Wilson (Virga Labs), Season Martin (Virga Labs), Angeline G. Pendergrass (Cornell University), Rob Cifelli (NOAA/ESRL/Physical Sciences Laboratory)

Kathy Jacobs

Center for Climate Adaptation Science and Solutions Arizona Institute for Resilience Department of Environmental Science University of Arizona

Extreme events are the "wake-up call" for climate change and they are becoming increasingly expensive both in economic, social and environmental terms.

Smith, NCEI 2023 Billion Dollar Disasters by Type

Overview of "Press and Pulse"

- Extremes in temperature and precipitation are increasing, with increasing damages
- This results from a *combination* of long-term trends and natural variability – along with changes in underlying drivers from anthropogenic forcing
- We explored underlying physical mechanisms of each type of extreme that was of concern to water managers, and what is known about trends in these extremes into the future

Colorado River Conversations Scenario Planning Workshops June 2019- April 2020

- Three workshops involved 30 Colorado River Basin representatives
- Explored "black swan events" and the areas of uncertainty outside the parameters of most planning discussions

Our process involved: Identifying drivers of change...

Building scenarios...

Researching and Writing Storylines...

Exploring Impacts...

Economic

Scenario 1: Caught Off Guard O o o o

Wet to Dry Swing Intrastructure Failures Governance Failure

After increasing variability (more frequent swings between very wet and very dry events), the Colorado River Basin enters a period of extreme precipitation. Heavy rain falls throughout the Basin, but especially in the Upper Basin. While snowpack declines overall, there are years with above average winter snow and summer rain that inundates rivers and fills reservoirs. As quickly as the extreme precipitation began, it stops. Conditions rapidly change to an extreme drying period.

As storage is maxed out during the wet cycle, dam infrastructure is compromised, stored water is released,

and reservoirs function at less than half of capacity. Water managers turn their attention to infrastructure

conditions are worsened by the fact that reservoir capacity was compromised under the wet period and

Quite quickly, the policies and shared sense of collaboration under flood conditions disintegrate, as water

users and communities tap into limited and tenuous storage supplies. Conflict erupts over how to manage

al

out

me

for rapid and extreme shortages and governance structures can neither act guickly enough, nor expansively

therefore local and basin-wide storage volumes are diminished at the onset of the extreme dry period.

enough, to address expanding concerns across the basin. Cross jurisdictional collaboration that was

safety, repairs, and maintenance in an effort to prevent catastrophic damage. Water managers must

immediately shift their attention away from managing for floods to managing against shortage. These

weather and pre intensity in the v

Infrastructure

A failure of a da impact on the C winter was fuele managers had p and then rain. U the structural co following this p accommodated bolstered during the wet period dissipates. Uncertainty amplifies under the dry period because of disputes for the future, th over how to distribute water and manage demands as drought conditions severely limit supply how connected lowering reserve supplies as con Governance

Impacts of the Caught Off Guard Storyline

While the Color conditions (Burn challenge the a litigation. Recer the Interior and played a trusted planning proces climate-related disputes about Citations	Covernance Inability to solve future problems – Inability to enforce existing laws Social Communities try to maximize alloca- tions	Economic Less growth Refugee crisis Local market collapse Augmentation options -regional and dependent on funding More dependence on desalination in Southern California	Ecologic Initial releases inundate rivers, I natural flow regi breaks down In Lower Basin, almost all stream are dry or conve ed to canals Higher fire risk Erosion of envire mental protection
116th Congress. 20 publ14/PLAW-1	Upper basin cannot meet lower basin needs	Funding becomes a source of conflict and uncertainty	
Bureau of Reclama https://www.usb 	Day Zero (a term borrowed from the Cape Town, South Africa drought to refer to a day when a region could run out of supplies): US Tucson, Sht Lake City, Northern from range Mexico Tipiona, Teoste, and Emenude	Physical Dam Failure Loss/damaged spillway spillways Flood control limitation No supply resilience Flooding damages othe	s and emergency s er aspect of delivery
Research 50 (6): IBWC 2012 Minut		imasoucture	

replenishment.

of Minute 318 Cooperative Measures to Address the Continued Effects of the April 2010 Earthquake in the Mexicali Cally, Baja California." https://www.ibwc.gov/Files/Minute_319.pdf

2017. Minute No. 323: "Extension of Cooperative Measures and Adoption of a Binational Water Scarciy Contingency Plan in the Colorado River Basin." https://www.ibwc.gov/EMD/Minute323.html

Meko, D.M., Woodhouse, C.A., Baisan, C.A., Knight, T., Lukas, J.J., Hughes, M.K. and M.W. Salzer. 2007. "Medieval Drought in the Upper Colorado River Basin." Geophysical Research Letters 34 (10): L10705. https://doi.org/10.1029/2007GL029988.

Woodhouse, C. A., D. M. Meko, G. M. MacDonald, D. W. Stahle, and E. R. Cook. 2010. "A 1,200-Year Perspective of 21st Century Drought in Southwestern North America." Proceedings of the National Academy of Sciences 107 (50): 21283-88. https://doi.org/10.1073/pnas.0911197107.

Scientific and Historic Evidence

Climate Drivers

Historical evidence of rapid swings from extreme wet to extreme dry can be found in streamflow reconstructions from Arizona tree-ring data, with one of the most extreme shifts occurring from 1201-1211 within the medieval drought (Meko et al. 2007; Woodhouse et al. 2010). Research on past floods also serves as a reference point for what can plausibly occur in the Colorado River Basin. Studies of peak discharges from measured, historical, and paleoflood records for tributaries throughout the Colorado River Basin show that maximum measured (gaged) floods have typically been lower in magnitude than historical floods and paleofloods. Results from these studies suggest that very large floods in the past were much more frequent than those in the gaged records and that the gaged record (1914 -2012) is biased towards low flows (Greenbaum et al. 2014). In addition, atmospheric rivers that contribute to extreme

Figure 6. Impacts of the Caught Off Guard Storyline

Inability to solve future problems litigation dominates Inability to enforce existing laws

Communities try to maximize allocations

Upper basin cannot meet lower basin needs

Day Zero (a term borrowed from the Cape Town, South Africa drought to refer to a day when a region could run out of supplies): US: Tucson, Salt Lake City Northern front range

Mexico: Tijuana, Tecate, and Emenada

Less growth **Refugee** crisis Local market

collapse Augmentation

options -regional and dependent on funding

More dependence on desalination in Southern California

Funding becomes a source of conflict and uncertainty

Dam Failure

Loss/damaged spillways and emergency spillways

Flood control limitations

No supply resilience

Flooding damages other aspect of delivery infrastructure

THE UNIVERSITY OF ARIZONA **ARIZONA INSTITUTES FOR RESILIENCE Center for Climate Adaptation Science** & Solutions

Ecological

Initial releases inundate rivers, but natural flow regime breaks down

In Lower Basin, almost all streams are dry or converted to canals

Higher fire risk

Erosion of environmental protection

And Identifying Common Solutions

Colorado River Conversations Project <u>https://ccass.Arizona.edu/Colorado-rver-</u> <u>conservations-project</u>

The Press and Pulse of Climate Change Extreme Events in the Colorado River

The Press and Pulse of Climate Change: Extreme Events in the Colorado River Basin

Amy L. McCoy (D), Katharine L. Jacobs, Julie A. Vano, J. Keaton Wilson, Season Martin, Angeline G. Pendergrass, and Rob Cifelli

Event of	Climate-	Impact of	Linkage to	Relevant
Concern noted	change trend	change	climate change	research
by water	defined		drivers	
managers				

JAWRA

VATER RESOURCES ASSOCIATION

TABLE 1	(beunitmon)
TADLE I.	(commod)

TABLE I. (continued)					
Events of concern noted by water managers	Climate-change trend defined	Impact of change	Linkage to climate change drivers	Relevant research ¹	A recent example (details in text)
The Upper Colorado River Basin in 2020 and 2021 had unexpectedly low run- off volumes					
4. Extensive wildfires	More areas burned	 Public safety threatened Air quality declines Water quality declines Increased erosion 	Increased temperatures, increased drying and reducutions in snowpack while lengthening the fire season	 Western US: Abatzoglou and Kolden (2011); Jenkins et al. (2014); Abatzoglou and Williams (2016); Holden et al. (2018); Kean et al. (2019); Zhang et al. (2020); Brey et al. (2021) US: Wehner et al. (2017) 	In 2020, Colorado experienced the three largest wildfires in recorded history
5. Short-duration intense wet and dry system shocks Precipitation intensity increases; each sto brings more water Rapid onset dry year (flash drought)	Precipitation intensity increases; each storm brings more water	 Flooding Increased erosion Dam safety concerns + Increased groundwater recharge in some locations + Drought relief 	A warmer atmosphere holds more water, so when it rains or snows there a greater chance that more precipitation will fall in any given event; additionally, storms are now developing in warmer and more humid environments, ocean surface temperatures drive a worldwide increase in size and number of storms	 Basin specific: Gutmann et al. (2016); Shamir et al. (2019); Corringham et al. (2019) Western US: Zhu and Newell (1994); Corbosiero et al. (2009); Dettinger (2013); Rutz et al. (2015); Alexander et al. (2015); Swales et al. (2016); Demaria et al. (2019); Gershunov et al. (2019); Davenport et al. (2020); Payne et al. (2020); Rhoades et al. (2020) US: Easterling et al. (2017); Kossin et al. (2017) Global: Trenberth (2011); Pendergrass and Hartmann (2014); Swann et al. (2016); Fischer and Knutti (2016); Simpson et al. (2016); Kossin et al. (2017); Pendergrass et al. (2017); Sippel et al. (2019); Heinze-Deml et al. (2020) 	In 2013, the "Front Range Flood" in Colorado resulted from record rainfall and urban runoff volumes
	Rapid onset dry year (flash drought)	 Water shortages Agricultural losses Recreation limited Increased fire danger 	Large-scale atmospheric circulation changes increase temperatures, modify precipitation, reduce cloud cover, and increase wind speeds A combination of	Great Plains and Eastern US: Hoell et al. (2020); Ford and Labosier (2017) US: Otkin et al. (2018); Christian et al. (2019); Pendergrass et al. (2020) Global: Hoffmann et al. (2021)	Recent example not within the Colorado River Basin July 2021 was the

(continued)

Projected Trends in Water-Management Related Extremes

- Heat events are likely to increase in frequency, magnitude and intensity
- Snowpack volumes expected to continue to diminish, timing of melt earlier
- Long-term drying associated with higher temperatures expected to continue
- Large forest fires expected to increase
- Sudden wet/dry transitions wet system shocks will increase but multiple mechanisms
- Monsoons less reliable, potentially more extreme

THE PRESS AND PULSE OF CLIMATE CHANGE: EXTREME EVENTS IN THE COLORADO RIVER BASIN

ARIZONA INSTITUTES FOR RESILIENCE Center for Climate Adaptation Science & Solutions