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Abstract: The impact of climate uncertainties is already evident in the border communities of the
United States and Mexico. This semi-arid to arid border region has faced increased vulnerability to
water scarcity, propelled by droughts, warming atmosphere, population growth, ecosystem sensitivity,
and institutional asymmetries between the two countries. In this study, we assessed the annual
water withdrawal, which is essential for maintaining long-term sustainable conditions in the Santa
Cruz River Aquifer in Mexico, which is part of the U.S.–Mexico Transboundary Santa Cruz Aquifer.
For this assessment, we developed a water balance model that accounts for the water fluxes into
and out of the aquifer’s basin. A central component of this model is a hydrologic model that uses
precipitation and evapotranspiration demand as input to simulate the streamflow into and out of
the basin, natural recharge, soil moisture, and actual evapotranspiration. Based on the precipitation
record for the period 1954–2020, we found that the amount of groundwater withdrawal that maintains
sustainable conditions is 23.3 MCM/year. However, the record is clearly divided into two periods:
a wet period, 1965–1993, in which the cumulative surplus in the basin reached ~380 MCM by 1993,
and a dry period, 1994–2020, in which the cumulative surplus had been completely depleted. Looking
at a balanced annual groundwater withdrawal for a moving average of 20-year intervals, we found
the sustainable groundwater withdrawal to decline from a maximum of 36.4 MCM/year in 1993 to
less than 8 MCM/year in 2020. This study underscores the urgency for adjusted water resources
management that considers the large inter-annual climate variability in the region.

Keywords: Santa Cruz River Aquifer; Mexico; water balance model; climate uncertainty; transbound-
ary aquifer; transboundary aquifer assessment; Arizona; Sonora

1. Introduction

According to the International Groundwater Resources Assessment Centre (IGRAC),
a total of 468 transboundary aquifers have been identified worldwide [1], a figure that
has steadily increased over the last decade due to advances in transboundary aquifer
assessment. Groundwater from transboundary aquifers constitutes a significant source of
fresh water for the environment and numerous communities in almost every nation [2,3],
representing a valuable, invisible, and finite resource that needs to be managed sustainably.

Historically, the United States and Mexico have engaged in insightful binational co-
operation and dialogue regarding water resources. A vivid example of such cooperation,
the 1994 Treaty for the Utilization of Waters of the Colorado and Tijuana Rivers and of the
Rio Grande, along with its interpretations (Minutes), addresses specific border, environmen-
tal, and water-related issues. Yet, U.S.–Mexico relations surrounding water resources have
not been exempted from conflict, such as the diplomatic dispute regarding the United States
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unilateral decision to build the All-American Canal in California that affected groundwa-
ter recharge in Mexican territory. In addition, the institutional asymmetries between the
two countries, which are detailed in [2,4,5], could also jeopardize possible cooperation on
water resources management, as described by [6]. Fortunately, among other outcomes,
cooperation between the United States and Mexico has resulted in transboundary-aquifer
assessment efforts to improve the understanding of their shared water resources.

A solid scientific foundation on groundwater resources is a needed first step in de-
veloping groundwater management strategies in transboundary settings [2]. It is also
essential in places that rely on groundwater resources for their basic activities or are cur-
rently affected by climate uncertainties, such as the Transboundary Santa Cruz Aquifer
(TSCA) shared between the United States and Mexico [3] (Figure 1). Water supply in the
TSCA, the binational aquifer recharged by the Santa Cruz River, is highly sensitive to
climate variability and largely depends on compliance of local and international water and
wastewater transfer agreements (e.g., [3,7–9]). The TSCA recharge results from riverbed
infiltration and mountain front recharge in Mexico and the United States. Thus, the TSCA
is a binational aquifer in which the water-resources management and natural processes on
one side of the border directly impact the neighboring country.
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Because of the region’s scarce water resources, population increase, and growing
groundwater demands on both sides of the border, the TSCA was selected for the U.S.–
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Mexico Transboundary Aquifer Assessment Program (TAAP). The TAAP was signed in
2009 by the principal engineers of the International Boundary and Water Commission
(IBWC) and aimed to improve the knowledge of U.S.–Mexico transboundary aquifers [10].
The principles of the TAAP Cooperative Framework include elements that promote trust
between the United States and Mexico (e.g., data sharing, development of binational
aquifer assessment activities, the establishment of technical advisory committees, and
the establishment of technical groups). These elements are crucial to maintaining the
binational cooperation necessary when researching shared aquifers. Transboundary aquifer
assessments worldwide have effectively employed these elements, including the Guarani,
Nubian Sandstone, Saharan Aquifer, and Genevese Aquifer [2]. This study is part of
the TAAP’s effort to better understand the TSCA, particularly in the Mexican portion of
the aquifer.

The TSCA comprises four political-administrative domains: the Santa Cruz Active
Management Area (SCAMA) in Arizona, with an areal extent of 1,854.43 square kilometers
(km2); the San Rafael Valley, with an areal extent of approximately 465 km2; the Nogales
Aquifer in Mexico, with an areal extent of 120 km2; and the Santa Cruz River Aquifer in
Mexico (SCRA-MX), with an areal extent of 952 km2 (Figure 1). The region’s water supply
relies on a relatively limited-storage, alluvial aquifer system underneath the Santa Cruz
River Valley. The dominant source of recharge for the aquifer is the episodic streamflow
events in the intermittent Santa Cruz River and its ephemeral desert tributaries. These
episodic streamflow events are triggered by highly variable, seasonal (winter and summer)
precipitation events (e.g., [7]). Thus, due to this region’s limited groundwater storage and
its reliance on episodic streamflow events, even small changes in groundwater recharge
patterns coupled with increased water demand from border communities can adversely
affect the water-supply reliability. Additionally, precipitation projections for the Upper
Santa Cruz River Basin point to significant uncertainty and increased interannual variability,
which will likely challenge water providers in meeting the water demands of the border
communities [3,7,9,11].

Though previous studies have analyzed water resources in different portions of the
TSCA, only a few have addressed the Santa Cruz River Aquifer in Mexico (SCRA-MX).
For instance, studies have assessed the impact of urban growth on water resources, fo-
cusing on the “Ambos Nogales” region, which is located within the Nogales Aquifer and
the SCAMA regions in Mexico and the United States [12,13]. Other studies developed
ecosystem-services tools to assess the impacts of climate change and urban growth in the
U.S. portion of the Santa Cruz Watershed [14] and to evaluate flood risk in the Ambos
Nogales region, considering various scenarios of land-use changes [15]. In addition, climate
change and water-resources assessments through hydrologic frameworks have also been
developed for the SCAMA, attempting to bridge the gap between scientific findings and
stakeholders [3,7,8,16,17].

Studies focusing on the SCRA-MX include hydrogeological characterizations of the
aquifer [18], regional studies that assessed the impacts of climate change on local water
resources [11,19], and the water availability reports published by the National Water
Commission in Mexico (CONAGUA) [20–23]. These studies have improved the knowledge
of the TSCA and have helped to develop tools that assist with water-resources-management
decisions. However, a deeper understanding of the TSCA system, particularly the SCRA-
MX, is needed to develop management strategies focused on groundwater sustainability.

Sustainable groundwater withdrawal can be generally defined as the amount of water
that can be withdrawn from an aquifer without causing undesirable environmental, eco-
nomic, or social consequences [24,25]. Undesirable outcomes of unsustainable groundwater
withdrawal may include a decrease in water availability for populations and the environ-
ment, a deterioration of the groundwater quality, riparian vegetation die-off, an intrusion of
contaminated water or seawater, and land subsidence. This study aims to identify, through
a water-balance model, the annual groundwater-withdrawal rate from the SCRA-MX that
maintains sustainable conditions. Although sustainable groundwater withdrawal can have
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various definitions and nuances, we define groundwater-withdrawal sustainability as the
withdrawal rate that maintains a multi-year balance between the water fluxes into and out
of the basin.

2. Study Area

From its headwaters in the San Rafael Valley in Arizona, the Santa Cruz River flows
southward to cross the U.S.–Mexico border into Sonora, Mexico. The river then curves
northward and returns to the United States, just east of Nogales, Arizona; from there,
it flows north to merge with the Gila River, a tributary of the Colorado River (Figure 1).

In the Mexican territory, water from the TSCA is primarily used by the city of Nogales
and the town of Santa Cruz. According to Mexico’s 2020 census, the number of registered
residents was 264,782 and 1,835 in Nogales and the town of Santa Cruz, respectively. These
numbers mark a 20.2% population increase for Nogales and an 8.16% decrease for the town
of Santa Cruz compared with the 2010 census. On the other side of the border, in the 2020
census for Nogales, Arizona, the population declined from 20,837 (2010) to 19,770 (2020).
During the same period, the total population in Santa Cruz County, Arizona, was almost
unchanged (47,420 in 2010 and 47,669 in 2020).

In Mexico, the national Law of the Nation’s Waters (in Spanish, Ley de Aguas Nacionales,
or LAN), signed in 1992, defines the role of the National Water Commission (CONAGUA)
as the federal agency responsible for water management. Grounded in the Constitution, the
LAN ordains in Article 20 that “the exploitation, use, or non-consumptive use [e.g., energy
production] of the nation’s water resources should be carried out through a concession or
asignación (in Spanish) granted by the Federal Executive Branch or Basin Councils” [26,27].
Asignación is the legal term that the legislation utilizes to describe water appropriation
for urban or domestic purposes. This appropriation cannot be transferred to other users.
A concession defines the amount of water that can be extracted from a specific well/aquifer.
The duration of concessions ranges from five to thirty years, and users can apply for an
extension [28]. The concessions and asignaciones are registered in the Public Registry of
Water Rights (in Spanish, Registro Público de Derechos de Agua, or REPDA).

CONAGUA is also responsible for publishing groundwater availability reports for
each aquifer in the Official Federal Gazette (in Spanish, Diario Oficial de la Federación, or
DOF). These reports, which are published every three years, guide the appropriations of
water concession and allocation volumes. In CONAGUA reports, water balance models
are used to assess groundwater availability. The premise of these water balance models is
that the Mean Annual Groundwater Availability for a given aquifer is equal to the difference
between Mean Annual Recharge and the Mean Annual Groundwater Extractions and the
Natural Discharge for environmental needs. For example, in 2020, CONAGUA published
groundwater availability reports for 653 aquifers and reported the available volume for
appropriation in the SCRA-MX to be 33.85 MCM/year [29]. It should be noted that the
actual volume of groundwater withdrawal is often not monitored by CONAGUA and may
therefore deviate from REPDA’s authorized volumes.

In the SCRA-MX groundwater concessions and asignaciones have increased from
19.2 MCM/year in 1995 to 33.85 MCM in 2020 (Figure 2) [30]. This increase is primarily
attributed to a gradual increase in appropriated concessions for agriculture, from 0 in
1995 to approximately 9 MCM/year in 2020. Additional appropriation of approximately
2 MCM/year was allocated since 2011 to the industrial sector for supporting copper
mining operations.

In the Nogales Aquifer in Mexico (Figure 1), groundwater allocations (concessions and
asignaciones) have ranged from 0.003 MCM/year to 1.37 MCM, since 1997. It is important
to note that additional water has been transferred for decades from both the SCRA-MX and
Los Alisos aquifers to supply the water needs of the city of Nogales [3,23,31]. According to
CONAGUA, since 1997, most concessions authorized in the Nogales Aquifer have been
industrial, consistent with the main economic activity reported by the Ministry of Economy
(Figure 2). In comparison, most of the groundwater volume allocated for the SCRA-MX
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is dedicated to urban-public services. Concessions in the SCRA-MX for livestock and
industrial activities have increased since 2011 (Figure 2). Data published by the Ministry of
Economy in 2019 show that the agricultural and mining sectors of the Nogales and Santa
Cruz municipalities have registered minimal increases in their economic activity during
this period [32].
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Figure 2. Groundwater Concessions (Asignaciones) in the Santa Cruz River Aquifer in Mexico and the
Nogales Aquifer. Source: REPDA (2020) [30].

3. Materials and Methods

Our study assessed the amount of annual groundwater withdrawal that maintains
long-term sustainable conditions in the SCRA-MX. Sustainable groundwater withdrawal
can be generally defined as the amount of water that can be withdrawn from the aquifer
without causing undesirable environmental, economic, or social consequences [24,25].
Undesirable implications due to unsustainable groundwater withdrawal may include the
decrease in water availability for populations and the environment, deterioration of the
groundwater quality, riparian vegetation die-off, intrusion of contaminated water, intrusion
of seawater, and land subsidence.

Within the U.S. side of the border, the term safe yield is often used to describe a man-
agement goal that maintains sustainable conditions. Safe yield is defined by ADWR as a
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groundwater management goal that attempts to achieve and maintain a long-term balance
between the annual amount of groundwater withdrawn and the annual amount of natural
and artificial recharge (A.R.S. § 45–561(12)). The terms “safe yield” and “sustainability”,
with respect to groundwater management, are often interchangeably used. Safe yield was
historically defined as the attainment and maintenance of a long-term balance between the
amount of groundwater withdrawn and the amount of recharge (e.g., [33]). Adhering to
this definition, in order to reach safe yield conditions, groundwater withdrawal should
not exceed natural recharge. This practice, however, ignores other long-term water fluxes
out of the basin such as discharge, evapotranspiration, or springs that extract unaccounted
for groundwater, which eventually may deplete the aquifer. Regardless of the term selec-
tion, the selected term should be clearly defined for each specific aquifer considering its
management goals and the potential hydrologic, economic, or ecologic harms inflicted by
unsustainable management [34].

To estimate the amount of annual withdrawal that maintains sustainable conditions,
we used a modeling framework that consisted of a water balance model (WBM) and
a hydrologic model. The WBM was developed to account for all annual water fluxes
into and out of the basin of the SCRA-MX and to calculate the long-term cumulative
water deficits or surpluses. In an arid environment that relies on highly inter-annual
climatic variability and therefore highly variable year-to-year natural recharge, the deficits
and surpluses should be assessed over multiple years. For instance, the current ADWR
recommendation for a quantitative assessment of safe yield is to consider a 20-year moving
average interval for the natural components of the water budget (e.g., natural recharge) and
a three-year running average for the artificial components (e.g., groundwater withdrawals
and incidental recharge). In our study, we assessed the sustainable withdrawal by first
considering the entire period of the historical record (1954–2020) and second, by considering
20 year moving averages, as recommended by ADWR.

3.1. Water Balance Model

Adapted from CONAGUA (2020) [23], the annual mass balance in the SCRA-MX basin
is calculated using the following equation:

∆S = Qin + GWin + Re + Ag − Qout − GWout − ET − Pu (1)

where ∆S represents the annual positive or negative water storage changes in the aquifer
and vadose zone, Qin and Qout are the Santa Cruz River streamflow in and out of the basin.
GWin and GWout are the groundwater fluxes into and out of the basin; Re is the natural
groundwater recharge component; Ag is the return flow from irrigated agriculture; ET is
the actual evapotranspiration losses; and Pu is the groundwater withdrawal. The units for
all the terms in Equation (1) are million cubic meters per year (MCM/year). CONAGUA’s
water balance model results for the SCRA-MX basin are in Table 1.

Table 1. CONAGUA’s WBM components for 2020 (MCM/year). Source: CONAGUA (2020) [23].

Inflows Outflows
∆S

GWin Ag Re Pu GWout ET

10.2 4.1 23.8 26.4 2.0 8.8 0.9

In this study, we solved the WBM equation to determine the groundwater withdrawal
(Pu) that maintains the long-term changes of ∆S in sustainable conditions. This simulation
was implemented at an annual time step to assess the overall long-term balance. In the
following section, we describe the WBM components considered in this study.

3.2. Precipitation

Hourly precipitation time series are needed as input to the hydrologic model. Hourly
precipitation records since 1949 are available from the Nogales 6N station (USC00025924;
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W110.968, N31.4554, 1055 m) from the US National Weather Service (Figure 1). However,
we found many disagreements when this record was compared to the 1954–2020 daily
quality-controlled dataset from the same station. We decided, therefore, to use the daily
time series and disaggregate it to hourly (see Figures S1–S6). The disaggregation was
carried out by using the hourly time series to identify the hourly diurnal distribution with
reported daily precipitation days. If hourly events were unavailable for the target date, we
selected from the hourly time series a rainy day within a short duration from the target date.

The hourly precipitation was then spatially interpolated over the study area using the
1958–2020, ~4 km2 gridded monthly rainfall, available from the TerraClimate dataset [35].
The interpolation was carried out by using the ratios of the station’s grid cell with the other
TerraClimate grid cells for the matching months. These ratios were used as multipliers for
the interpolation to derive 4 km2 hourly time series. Prior to 1958, a randomly selected
month from the same wetness tercile as the station’s record was used for the interpolation.
The interpolated 4 km2 grid was then averaged over the area of the modeling units to
derive the hourly Mean Areal Precipitation (MAP) time series, which were used as input
to the hydrologic model. This spatial interpolation method assumes that the Nogales
gauge well represents the occurrence of hourly events over the study area, and that the
hourly rainfall distribution throughout the month is uniformly distributed in space. These
assumptions are particularly challenged during the North American Monsoon summer
rainfall characterized by small-scale local convective thunderstorms.

3.3. Streamflow (Qin and Qout)

Observations of surface inflow and outflow to and from the Mexican portion of the
Santa Cruz River are available from the USGS hydrometric stations at Lochiel (USGS
09480000) and near Nogales (USGS 09480500). The Lochiel hydrometric station, approxi-
mately 2.5 km north of the international border (Latitude 31◦21′19′ ′, Longitude 110◦35′20′ ′,
1400 m above sea level), drains 209 km2 of the Santa Cruz River headwater at the San Rafael
Valley and parts of the Patagonia and Huachuca Mountains. It has a daily streamflow
record for the period January 1949–August 2014 and from May 2019 to present. Approxi-
mately one kilometer north of the international border, the Nogales hydrometric station
(Latitude 31◦20′40′ ′ N 110◦51′03′ ′ W, 1120 m above sea level) drains an area of 1364 km2.
It has a daily streamflow record from 1913 to the present, with some missing years during
the 1920s. We note that although the 1954–2020 observed average streamflow out of the
basin was 22.1 MCM/year (range 0–181 MCM/year), the streamflow out of the basin was
likely generated from rainfall over the basin and therefore was not considered as a negative
flux in Equation (1).

For this study, a hydrologic model was used to simulate the inflow and outflow
(i.e., Qin and Qout) as a function of precipitation. The hydrologic model we used is the
Sacramento Soil Moisture Accounting (SAC-SMA) model [36], as it was configured for this
basin by the Colorado Basin River Forecast Center (CBRFC), U.S. National Weather Service
(see Figures S7 and S8).

The SAC-SMA model is a continuous hydrologic model that keeps track of the water
content at the basin’s top and subsoil layers. It uses precipitation and evapotranspiration
(ET) demand as input to simulate runoff, recharge, actual evapotranspiration, and soil
moisture. The CBRFC’s primary purpose is to warn for high-flow events. Therefore, they
focused their SAC-SMA model calibration on capturing episodic flow events. In our study,
the model was used to account for the overall streamflow influx into the area of interest.
Therefore, the model required additional calibration to capture the range of flow regimes.
The calibration was carried out by comparing the simulated streamflow on the Santa Cruz
River in Lochiel and near Nogales to observed flow from the USGS gauges. The assessment
was carried out for ranging time scales of daily, seasonal, and annual flows. The CBRFC
SAC-SMA model configuration for the SCRA-MX basin is based on three hydrologic units.
The first hydrologic unit (210 km2) drains the headwater of the Santa Cruz River to the
US–Mexico border crossing. The second and third hydrologic units are the upper and lower
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parts of the SCRA-MX basin, respectively. The upper part of the basin (617 km2) drains
areas higher than 1515 meters, while the lower part of the basin (537 km2) drains areas
lower than 1515 meters. In our implementation, the surface runoff generated by the lower
part of the basin was considered for the flow simulation at the outlet.

The runoff from the upper part, below 50 m3/sec was considered as the groundwater
recharge component. This assumption is warranted, as it is seen that most of the flow at the
Nogales gauge is attributed to local rainfall events. During large storms in the upper basin,
the flow contribution to the basin’s outlet is delayed and later appears as baseflow [7,16].

In Table 2, summary statistics for the 1954–2020 estimated annual recharge are pro-
vided. Notice that CONAGUA (2020) [23] estimated the vertical recharge at 23.8 MCM/year,
comparable to our estimated annual average. However, as it is apparent from the values
presented in Table 2, the large inter-annual variability of the groundwater recharge may
not be well represented by the sample’s first-moment indicator.

Table 2. The 1954–2020 estimated recharge in the SCRA-MX.

Estimated Recharge (MCM/Year)

Average 25.8
Median 20.1
Standard Deviation 22.8
Minimum 0.7
Maximum 104.5

3.4. Groundwater (GWin and GWout)

The border crossing groundwater inflow and outflow mainly occur at the alluvial
aquifer underneath the river’s channel bed. These fluxes are not measured and are esti-
mated from previous studies. Although these fluxes are likely dependent on the aquifer
pressure gradients near the international border, we assume constant groundwater fluxes.
In our analysis, we adopted CONAGUA (2020) [23] estimate of +10.2 and −2.0 MCM/year
for the GWin and GWout, respectively (‘+’ indicates a flow from the United States to Mexico
and ‘-’ indicates a flow from Mexico to the United States). Other studies estimated GWout
to be 3.5 MCM/year [37], 1.54 MCM/year [38], and 1.66 MCM/year [39].

3.5. Evapotranspiration (ET)

Evapotranspiration (ET) from the basin can be divided into ET from the soil, ET
from irrigated agriculture fields, and ET from the shallow groundwater aquifer through
riparian vegetation and exposed surface water sections of the stream. In Equation (1),
the ET variable refers to the latter component. The hydrologic model calculates the ET
from the soil, and it is implicitly accounted for in the recharge and streamflow terms. The
ET from the agricultural field is considered in the calculation of the agricultural return
term. In CONAGUA (2020) [23], the total ET losses from the aquifer were estimated as 8.8
MCM/year. This estimate assumes that ET from the groundwater is linearly reduced with
depth-to-water up to an extinction depth of 10 m. In CONAGUA (2020) [23], the surface
area estimate of the aquifer’s water levels was provided as a base for the ET estimate. This
procedure assumes that the aquifer’s water level and the potential evapotranspiration are
not changing from year to year.

Using the hydrologic model simulations, we found that the average actual ET from
the soil is 314 MCM/year, and the average actual ET is 88% of the annual precipitation. The
actual ET is highly correlated with precipitation and ranges from 130 to 530 MCM/year,
62 to 103 percent of the annual precipitation, respectively. These actual ET estimates are
comparable to findings by Minjarez et al. (2011) [19].

3.6. Agricultural Return Flow (Ag)

To estimate the agricultural return flow, we used the CONAGUA (2020) [23] procedure.
It was based on calculations of crop consumptive use, which is the amount of transpired



Water 2022, 14, 233 9 of 15

water during the growth period of the crop. The agricultural return is then calculated
as the irrigated water and precipitation that is in excess of the estimated consumptive
use. In CONAGUA (2009 to 2020) [20–23], the irrigated agriculture area was estimated as
8.3 km2 of alfalfa (60%), oat (30%), and sorghum (10%). Using the modified Blaney–Criddle
equation [40], the integrated consumptive use of these crops was estimated as 901 mm/year
(7.5 MCM/year), and the agricultural return was estimated as ~4.1 MCM/year. In our
implementation of the WBM, we used CONAGUA’s estimate of consumptive use and the
dynamic year-to-year change in precipitation to estimate the groundwater withdrawal that
was needed for irrigation. The 1954–2020 average annual precipitation over the agricul-
tural fields was 2.6 MCM/year (range 0.9–5.5 MCM/year), and the average groundwater
withdrawal that satisfied the irrigation demand was 4.9 MCM/year, ranging from 1.9 to
6.6 MCM/year. This demand calculation assumes that precipitation occurred during the
growing season, and the irrigation was optimized to satisfy the crops’ consumptive use.
It is important to note that the National Institute of Statistics and Geography (Instituto
Nacional de Estadística y Geografía) estimated the irrigated agriculture area in the basin to
be 15.7 km2 [41]. Using a 30 m near-infra-red band of Landsat-8 images from May 2018
and May 2019, our team estimated an area of approximately 17 km2 of agricultural fields.
Thus, the water consumption, as well as the areal extent of irrigated agriculture in the basin,
is uncertain and requires a comprehensive survey.

4. Results

Using 1954–2020 climate dependent recharge, Qin and Ag (as explained above), we
solved Equation (1) for the amount of groundwater withdrawal (Pu) yielding a ∆S annual
average of zero. The Pu that maintains a 1954–2020 average ∆S of zero is 23.3 MCM/year.
This Pu is in addition to the Pu used for irrigation that satisfies the estimated consumptive
use of the cultivated fields, as described in CONAGUA (2020) [23]. Using this estimated
Pu, the average fraction of the inflow and outflow fluxes from the basin are presented in
Figure 3, and the average quantities of these various fluxes are presented in Figure 4. The
largest influx to the basin is the natural recharge, a highly variable flux (see Table 2) that is
mainly controlled by the inter-annual variability of precipitation over the SCRA-MX basin.
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Figure 3. The 1954–2020 average annual percentages of inflow and outflow fluxes to the SCRA-
MX basin.

The cumulative changes of the ∆S using the estimated Pu of 23.33 MCM are shown in
Figure 5a. It is seen that out of the 67 water years, approximately 33% have shown a surplus
while most years ended with a deficit. The cumulative surplus consistently increased from
1965 to reach a surplus of approximately 385 MCM in 1992. These surplus years can be
related to frequent El Niño-Southern Oscillation conditions and positive Pacific Decadal
Oscillation [8]. However, since 1992, only two years showed an annual surplus (positive ∆S)
and in 2020, the entire surplus that had been gained until 1992 was depleted. These long
periods of accrued surplus (1965–1992) and deficit (1995–2020) exemplify the dependence
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of the sustainable Pu on the period of analysis. The increasing and decreasing trends shown
in Figure 5 seem to support ADWR recommendations for examining 20-year intervals, a
duration sufficiently long to capture the observed multi decadal trends.
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The fluxes estimated for the WBM can be grouped to three general categories: climate
driven annually variable fluxes (Qin, Qout, Re), satisfying water demand fluxes (Ag, Pu),
and constant annual fluxes (GWin, GWout, ET). The first category is based on a hydrologic
model that uses sub-daily precipitation and evapotranspiration demand time series as
input to simulate the fluxes needed for the WBM. While the simulated Qin and Qout
were compared to observed streamflow records, the Re estimate cannot be compared to
observations. As discussed in the results section, the Re is the largest flux into the basin
(Figures 3 and 4) and has large inter-annual variability (Table 2).

Considering moving averages of 20-year intervals, the estimated Pu is shown
in Figure 5b (average Pu of 26.3 MCM/year (ranging from 8.1 to 36.8 and an S.D of
9.6 MCM/year). As expected, the estimated 20-year annual Pu has continuously declined
since the mid-1990s to approximately 9 MCM/year since 2012.

5. Discussion

Overall, there has been constant cooperation and dialogue over water resources shared
between the United States and Mexico. A remarkable example is the 1944 Water Treaty that
has allowed sharing surface water among both countries. However, this agreement does not
include groundwater management. This absence has not been addressed, although some
steps have been taken—for instance, creating the TAAP that allows technical cooperation
between both countries and sharing information on groundwater resources.

The Santa Cruz River Aquifer in Mexico (SCRA-MX) is part of the Transboundary
Santa Cruz Aquifer (TSCA), an aquifer shared by the United States and Mexico. The TSCA
is located in a semi-arid region characterized by limited groundwater storage, dependency
on climate variability, and physical water and wastewater transfers within Mexican territory
and between the two countries [3,11,19]. Because of this region’s limited groundwater
storage and the border communities’ reliance on groundwater as their sole resource, even
small changes in groundwater recharge patterns coupled with increased water demands
can detrimentally impact the water-supply reliability.

Previous efforts on the TAAP have focused on understanding the aquifer characteris-
tics of the TSCA, particularly the U.S. portion of the aquifer e.g., [3,12]. Our study improves
the understanding of the SCRA-MX, contributes to the overall knowledge of the binational
TSCA, and provides information that could serve as a reference for developing a fully
binational water budget model.

This analysis, along with previous studies for the TSCA (e.g., [3,11]), reported a
substantial decline in regional precipitation since the early 21st century. For example,
summer and winter precipitation has declined by 10% and 33%, respectively, according
to comparisons of precipitation records from 1955–2000 to 2001–2020. These declines are
substantially larger when comparing the same periods of the observed streamflow records
out of the SCRA-MX basin (65% and 78% for summer and winter flow, respectively) [8].

Moreover, climate model projections for the mid-21st century for the SCRA-MX basin
point to changes in precipitation regime, although these changes are highly uncertain
e.g., [8]. These projections will pose additional challenges for water providers in meeting
the demands for border communities [3,7,9,11]. To date, most water resources studies in the
TSCA have focused on the Ambos Nogales region or the SCAMA (e.g., [3,7–9]). Excluding
the CONAGUA water availability reports, only a few studies have examined the impact of
groundwater extractions in the SCRA-MX (i.e., [18,19,38]). In our study, we used a water
balance model approach to estimate the amount of groundwater that could be withdrawn
from SCRA-MX, while maintaining a long-term balance between water flowing into and
out of the basin. Our study only assessed long-term water resources availability while
not examining other potential ecological, economic, water quality degradation, or other
harms that water resources management practices may cause. Although our analysis yields
deterministic estimates for sustainable annual groundwater withdrawal, based on the best
available data and information to derive the input for the WBM equation, it is important to
note the analysis’ main assumptions and the known sources of uncertainties that may have
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influenced the results. The main assumption that may require additional examination is
that multi-year cumulative surpluses can be indefinitely stored in the basin and used to
compensate for shortages in deficit years. It is likely that the aquifer’s storage of surpluses
is limited by the size of the aquifer and the dynamic of the groundwater interaction with
the stream and atmosphere.

Since natural groundwater recharge is highly variable in space and time, an accurate
measure of this dominant flux is impractical. However, additional hydrological and hydro-
geological measurements could advance understanding of the basin’s hydrological process
to potentially reduce the uncertainty in the natural recharge estimate. The uncertainty
source in the second category stems from a lack of groundwater withdrawal monitoring.
Following CONAGUA’s procedure we assumed that the groundwater withdrawal was
equal to the appropriated concessions and asignaciones, as reported by REPDA. Additional
information is needed to understand how well the appropriated concessions represent the
actual groundwater withdrawal in the basin.

An additional source of uncertainty, as discussed before, is the areal appraisal of
the cultivated and irrigated fields. The third category of fluxes, which were assigned
as constants following CONAGUA’s estimates, is also likely to vary in time. The main
reason for assigning them as constants is the lack of information and data to understand
their temporal variability. With the available information on the economic activities in the
Nogales and Santa Cruz municipalities, it is possible to identify a positive relationship
between increased industrial activities and water allocations from 2009 to 2020. While the
groundwater surplus has reduced since 1995, allocations for agricultural and industrial
activities have increased. Considering this trend, it would be desirable that the national
authority assess the potential negative impacts of groundwater over-allocation and its
availability to maintain a long-term balance between water flowing into and out of the basin.

It is generally possible to monitor groundwater extraction for asignaciones because
they are dedicated to public services, for which municipal and state government agencies
are responsible for reporting to CONAGUA. However, for groundwater concessions, the
monitoring is limited. Additionally, as mentioned above, concessions can be transferred to
other users, and although these changes must be reported to CONAGUA, they are often
not being promptly reported. Future TAAP efforts on transboundary aquifer assessment
include the evaluation of the uncertainty associated with the water balance model that
was developed for the TSCA and the identification of specific actions that can substantially
reduce uncertainty in WBM simulations. In addition, development of recommendations for
a model and data management framework for binational watersheds with similar setting
to the TSCA.

6. Conclusions

In this study, we assessed the amount of groundwater withdrawal that maintains
sustainable conditions in the SCRA-MX, which is part of the TSCA. In this part of the
aquifer, the regulatory allocated groundwater concessions had steadily increased from
approximately 18 MCM/year in 1995 to approximately 34 MCM/year in 2020. The increase
in groundwater withdrawal concessions was primarily attributed to new allocations for
agricultural and industrial usage. In this study, we used a water balance model (WBM) that
accounts for all the annual water fluxes into and out of the basin to determine the amount
of multi-year groundwater withdrawal that maintains sustainable conditions. In our study,
“sustainable conditions” is defined as the amount of annual groundwater withdrawal
that maintains a long-term difference of zero between the water fluxes into and out of
the basin. We developed a hydrologic model to estimate the year-to-year WBM fluxes of
natural recharge and streamflow into and out of the basin (i.e., Sacramento Soil Moisture
Accounting). This contribution adds information to current CONAGUA publications. The
SAC-SMA model, which was constructed for the region as three sub-basins, uses hourly
precipitation and evapotranspiration demand as model input to continuously simulate
streamflow, soil moisture, actual evaporation from the soil, and groundwater recharge. The



Water 2022, 14, 233 13 of 15

hourly precipitation time series for the SAC-SMA model was developed for 1954–2020
using a gauge located near the border and interpolated using monthly gridded climatology.

The average annual groundwater withdrawal amount that maintained sustainable
conditions from 1954–2020 was 23.3 MCM/year. However, by implementing this constant
annual withdrawal, there was a period of accrued surplus (1965–1993) followed by an
accrued deficit (1994–2020). We also estimated the annual groundwater withdrawals that
maintain sustainable conditions in a moving average of 20-year intervals, as recommended
by ADWR for safe yield assessment in the SCAMA. For the analysis of the moving average
of 20-year intervals, the groundwater withdrawal that maintained sustainable conditions
peaked in 1993 at 36.4 MCM/year and had since declined to less than 8 MCM/year in 2020.
CONAGUA, in their latest groundwater availability report [23], estimated that groundwater
withdrawal of 26.4 MCM/year yields an additional 2.2. MCM/year of available water that
could be allocated.

This study demonstrates the sensitivity of water resources management in the Mexican
part of the Santa Cruz River basin and its high dependence on natural recharge, which
depends on precipitation variability. It points to the challenge of identifying a management
scheme that yields sustainable conditions. These challenges are exacerbated by the recent
dry period and the projected uncertain precipitation in the region [12]. These mounting
challenges call for careful adaptive management and planning of the aquifer to maintain
sustainable conditions and long-term reliable water supply into the future.
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