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United Nations Sustainable Development Goals

SAFE AND AFFORDABLE DRINKING WATER INCREASE WATER-USE EFFICIENCY AND ENSURE
FRESHWATER SUPPLIES

By 2030, achieve universal and equitable
By 2030, substantially increase water-use efficiency

access to safe and affordable drinking _ _
across all sectors and ensure sustainable withdrawals

water for all. .
and supply of freshwater to address water scarcity

and substantially reduce the number of people
suffering from water scarcity.

To meet the 2030 target year, the pace of progress will need to
accelerate...
6X for global coverage of Drinking Water
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Introduction

Water Shortages

California’s drought stripes
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Arizona Limits Construction Around
Phoenix as Its Water Supply Dwindles

In what could be a glimpse of the future as climate change batters
the West, officials ruled there’s not enough groundwater for

projects already approved.




Inland Desalination

, g ) {lll—=
Arizona, Low on Water, Weighs
Iaking It From the Sea. In Mexico.

A $5 billion plan to desalinate seawater in Mexico and pipe it to
Phoenix is testing the notion that desert cities can keep growing
as the Earth warms.

The world’s drinking water supply is at risk and desalination plants are set to make more
saltwater potable. But to make the process sustainable and affordable, new and improved

technologies need to be further developed
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Reverse Osmosis and Nanofiltration
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Methods

Yuma Desalting Facility
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* We used BW30- 2540,
NF90-2540 and
NF270-2540
membranes

®

THE UNIVERSITY
OF ARIZONA



Hypothesis

Including Nanofiltration in the industry baseline desalination treatment train
at different stages or as a pre/post treatment to reverse osmosis (RO) can aid
the desalination process by improving RO performance and overall
lowering energy requirements of the desalination process.
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Methods

Objectives

1. Assess the best hybrid configuration to increase membrane lifetime,
further concentrate brine, decrease specific energy consumption (SEC),
and increase water quality.

2. Identify a modeling strategy that can effectively compare the trade-
offs between rejection, water flux, cost, and system energetics of NF-
RO and RO-NF compared to conventional RO.

A,

THE UNIVERSITY
OF ARIZONA




Reverse Osmosis System Configuration
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Reverse Osmosis System Configuration Integrating
NF90 Membrane
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Methods

One Stage Reverse Osmosis System Configuration
Pre/Post Treating using NF270
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Methods

Equations for Performance Metrics

Salt Rejection Recovery

Product Flow

Feed Flow *100%

Concentrate/Brine

Product/Permeate

A,

THE UNIVERSITY
OF ARIZONA

12



Methods

System Modeling

0.1 Million Gallons / Day

1 Million Gallons / Day

Scaling up the Units 10 X
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System Model Using WAVE

¢ Configured a larger pilot Feed water quality:
system on WAVE that N
able
simulates a IMGD plant Pretreated MODE Feed Water Composition
Ton Concentration
. : (mg/L)
** WAVE has inputs such as Barium 0002
Calcium 85.8
- Feed flows . Chloride 541.5
- Feed water quality Magnesium 50. 0
Nitrate as N 6.6
= RGCOVel‘y Potassium 6.9
7, _ Sodium 528.8
'ﬁ Membrane type Strontium 1.26
- _ Stages Sulfate 764.9
N Conductivity 3,192
< - Membrane elements pH 6.12
P Total Alkalinity 5.8 ZAS
z TDS (mg/L) 2,015 ®
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Methods

Model Calculations

Variable Operating and Management Inputs Components
""""""""""""""""""""""""""""""""" Co T
| . «»High pressure pump +Booster
* Electric i pump + Membrane modules +
. Waste Disposal i
¢ Membrane replacement ,
___________________________________________________ )

“» Water Disposal

“* Annual O&M cost divided by the
total permeate water produced 1n
one year

Annual Fixed O&M



Results

Element
Calcium Magnesium Potassium Sodium

Chloride

Sulfate

RO Salt Rejection Heatmap

100.0 %
99.5%
99.0%
98.5%
-98.0%
-97.5%

-97.0%
RORO RONF90 NFO9ORO NF270RO RONF270

Configurations

Pilot System Results - Salt Rejections

“* RO-NF90 and NF90-RO
have lower rejections of

monovalent 10ns

compared to the baseline
RO-RO and NF270

configurations

“* NF270-RO has the
highest rejections greater

than 99% for

monovalent and divalent

10nS
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60

E E ® “* ~50% lower SEC of the
s | @ >0 RO element when
o o E o | 47  pre/post-treating while
= E E ¢ increasing the recovery
< 1.0 : : 303 of the system by ~25%
2 : : 3
z : : 20
0.5 : E “* NF90-RO 1s ~60% less
: : 10 than the baseline RO-RO
@ 0.0 : ' 0 configuration
A O
~ S
2 : /A
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Modeled Results— SEC and Recovery

Baseline Integration Pre/Post Treatment .
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Results

Modeled Results— Recovery and SEC

Baseline Integration Pre/Post Treatment
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Results

$/m>water produced

Modeled Results— Cost of Variable O&M

o Baseline Integration Pre/Post Treatment
5 . .
| !
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. | |
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Results

Modeled Results— Cost

Baseline Integration Pre/Post Treatment
0.5 : : 1 NF270 Additional Cost
: :
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¢ Adding the additional
cost of treatment using
the NF270 membranes

drastically increases the
NEF270-RO cost

¢* RO-NF270 cost remains
~40% lower than RO-

RO
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Conclusions- Tradeoffs

Metric RO-RO RO-NF90 NF90-RO NF270-RO RO-NF270
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Results

Next Steps- Analysis of Scaling of the systems

Done

¢ Increased concentration of the feed
stream to speed up scaling process

¢ Analyze flows and pressure changes

Working on

¢ Membrane Autopsies

¢ Analysis of the membranes (SEM,
contact angle, zeta potential)
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Thank you
Questions?




Results

System parameters-

ciement
Calcium Magnesium Potassium Sodium  Chloride

Sulfate

RO Salt Rejection Heatmap

Element
Calcium Magnesium Potassium Sodium

NFOORO NF270R0O RONF270

Configurations

RORO RONF90

1st stage

Salt Rejections

RO Salt Rejection Heatmap

Chloride
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*¢* Feed of the overall

B Chloride .
— B Sodium configuration
uJ‘ B Magnesium
5 b Versqs the feed
g O sulfate entering the 2"
-
S stage RO
~—
£ soof membranes
- . .
S ¢ Mainly consists of
c °
S monovalent 10ns
0

Feed 1st Stage Permeate A
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Pilot System Results— Recovery and SEC

1.000 ‘:‘ Typical Feed
- B Chloride concentrations of the

B Sodium

= Magnesion configurations and the
B Sulfat 2nd stage permeate that
will be entering back
into the feed.
¢ Higher Monovalent
1ons, less divalent
“* Reduced Sulfate

concentrations
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reeua

NHs* | 0.00
K* 6.93
Na* 528.6
Mg*2 | 50.26
Ca*2 | 85.74
Sr+2 1.25
Bat+2 0.01
CO3-2| 0.00
HCOs-| 7.08
NOz- 6.64
F- 2.60
cl- 541.9
Br-1 0.00
S04-2| 765.5
PO4~3| 2.60
Si02 8.91
Boron| 0.80
CO2 5.88

NHa*
K+
Na+
Mg*2
Ca*2
Sr+2
Ba*2
CO3-2
HCOs-
NOs~

Br-1
S0472
PO4~3

Si02

Boron

Feed

0.00
8.15
624.2
51.18
88.22
1.28
0.01
0.00
8.75
9.53
3.63
757.3
2.97
678.2
0.00

11.98

inl

Feed |
s
NHs* | 0.00
K* 8.79
Na+ 674.9
Mg*2 | 53.18 | :
Ca*2 | 92.04 ‘ :
Sr+2 1.33 ‘
Ba*2 ‘ 0.01 ‘
CO3-2| 0.00 ‘
HCOs-| 8.97 ‘ :
NOz- | 10.92 ‘ ‘
F- 4.08 ‘
cl- 851.3 ‘
Br-1 2.20 ‘
S04-2| 671.7 ‘
PO4~—3 ‘ 1.60 ‘
Si02 | 13.60 ‘
Boron| 0.89 ‘
|

Feed ‘7

0.00
9.08 ‘
698.2
54.08
93.78
1.36
0.02
0.00
9.08
11.59 ‘
4.28
893.1
2.68

670.7

‘ Feed

NHs* | 0.00
K* ’ 9.21
Na* 708.7

Mg*2 | 54.47
Ca*2 | 94.52
Sr+2 1.37
Bat+2 0.02

CO3-2| 0.00

HCOs-| 9.07

NOs~ ’ 11.92
F- ’ 4.37
c- ’ 911.7
Br-1 2.55

SO4‘2’ 670.4

PO4-3 ’ 1.42
Si02 | 14.86

Boron’ 0.90
CO2 ’ 5.90

reea
NHs* 0.00
K* 9.27
Na*+ | 713.4
Mg*2 | 54.63
Ca*2 | 94.84
Sr+2 1.37
Ba*2 0.02
COs-2| 0.00
HCOs~=| 9.07
NOz- | 12.08
F- 4.41
c- 919.9
Br-1 | 2.62
S0472| 670.3
POs~3| 1.35
Si02 | 15.09
Boron ‘ 0.90
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